

Tighe & Bond

33 White Oaks Subdivision
Laconia, NH

Drainage Analysis

Scott Buonopane

January 30, 2026

Table of Contents

SECTION 1 Narrative.....	1-1
1.1 On-Site Soil Description	1-1
1.2 Pre- & Post-Development Flow Comparison.....	1-1
1.3 Best Management Practices.....	1-2
SECTION 2 Drainage Analysis	2-1
2.1 Calculation Methods.....	2-1
2.2 Pre-Development Conditions	2-1
2.2.1 Pre-Development Calculations.....	2-2
2.2.2 Pre-Development Watershed Plan.....	2-2
2.3 Post-Development Conditions.....	2-3
2.3.1 Post-Development Calculations	2-3
2.3.2 Post-Development Watershed Plan	2-3
2.4 Peak Rate Comparisons	2-4
2.5 Mitigation Description	2-4
2.5.1 Mitigation Calculations	2-4
2.5.2 Pre-Treatment Methods for Protecting Water Quality	2-4
2.5.3 Treatment Methods for Protecting Water Quality	2-4
SECTION 3 BMP Worksheets	3-5

Appendices

- Appendix A: NRCS Web Soil Survey
- Appendix B: NRCC Rainfall Data
- Appendix C: Full-Size Watershed Plans

SECTION 1 | Narrative

The proposed project is located along White Oaks Road on a parcel of land identified as Tax Map 278 Block 241 Lot 29 on the City of Laconia Tax Maps. The project includes the subdivision of the existing parcel into twenty-five (25) lots, consisting of twenty-four (24) single-family residential building lots and one (1) lot for the remainder of the existing parcel. The proposed work includes the construction of two (2) new public roadways and associated infrastructure improvements, including stormwater management and utilities. The proposed lots and roadway have been designed to meet or exceed applicable zoning and subdivision requirements.

1.1 On-Site Soil Description

The site consists of terrain that generally slopes from the north of the property to the south. The existing parcel has an approximate high point elevation of 592 along the norther parcel limits and a low point with a low point of approximately 554 to the south.

A Web Soil Survey for the subject parcel as obtained from the United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) website and can be found in Appendix A of this report. The runoff analyzed within these studies has been modeled using Hydrologic Soil Group C soils. The site is comprised of Canterbury Soils with drainage classifications of moderate-drained soils.

1.2 Pre- & Post-Development Flow Comparison

For the purposes of this analysis, runoff generated by the site has been analyzed at two (2) distinct points of analysis (PA-1 & PA-2). These points of analysis were chosen to compare the Pre and Post-development flows. PA-1 is located along White Oaks Rd to the west of the proposed development lot. PA-2 is located at the on-site forested wetland to the east of the proposed work. Runoff from this wetland generally flows to the southwest along the abutting commercial property and ultimately to White Oaks Rd.

The peak discharge rates at this point of analysis were determined by analyzing Type III 24-hour storm events. The rainfall data for these storm events were obtained from the data published by the Northeast Regional Climate Center (NRCC) at Cornell University, which can be found in Appendix B.

TABLE 1-1 Comparison of Pre and Post Development Flows

Point of Analysis	Pre/Post 2-Year Storm (cfs)	Pre/Post 10-Year Storm (cfs)	Pre/Post 25-Year Storm (cfs)	Pre/Post 50-Year Storm (cfs)
PA-1	1.15/ 0.76	2.90/ 1.91	4.44/ 2.83	5.93/ 4.91
PA-2	3.12/ 1.98	8.42/ 7.17	13.18/ 9.63	17.87/ 12.09

1.3 Best Management Practices

All soil erosion and sediment control measures have been designed in accordance with the New Hampshire Stormwater Manual. The intent of the outlined measures is to minimize erosion and sedimentation during construction, stabilize and protect the site from erosion after construction is complete and improve stormwater quality from the site. Best Management Practices for this project include:

- Temporary erosion and sediment control practices to be implemented during construction;
- Permanent stabilization practices to be implemented prior to the completion of construction;
- Stormwater treatment practices including Sediment Forebays and Pretreatment Swales;
- Stormwater detention practices including Bioretention Rain Gardens;

SECTION 2 | Drainage Analysis

2.1 Calculation Methods

The design storms analyzed in this study are the 2-year, 10-year, 25-year and 50-year 24-hour duration storm events. The stormwater modeling system, HydroCAD 10.0 was utilized to predict the peak runoff rates from these storm events. A Type III storm pattern was used in the model.

The time of concentration was computed using the TR-55 Method, which provides a means of determining the time for an entire watershed to contribute runoff to a specific location via sheet flows, shallow concentrated flow and channel flow. Runoff curve numbers were calculated by estimating the coverage areas and then summing the curve number for the coverage area as a percent of the entire watershed.

References:

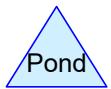
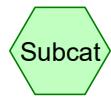
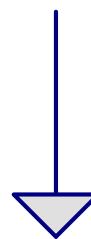
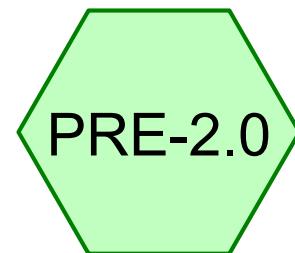
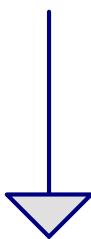
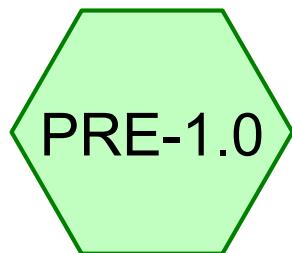
1. HydroCAD Stormwater Modeling System, by HydroCAD Software Solutions LLC, Chocorua, New Hampshire.
2. New Hampshire Stormwater Management Manual, Volume 2, Post-Construction Best Management Practices Selection and Design, December 2008.
3. "Extreme Precipitation in New York & New England." Extreme Precipitation in New York & New England by Northeast Regional Climate Center (NRCC), 26 June 2012.

2.2 Pre-Development Conditions

To analyze the pre-development condition, the site has been modeled utilizing two distinct points of analysis (PA-1 & PA-2). These points of analysis and watersheds are depicted on the plan entitled "Pre-Development Watershed Plan", Sheet C-801.

The points of analysis and their contributing watershed areas are described below:

Point of Analysis One (PA-1)







Point of Analysis 1 is comprised of one subcatchment area (PRE-1.0). This area includes two existing buildings, various residential driveways, a small portions of grass, and woods. Runoff from this area travels southwest via overland flow to Point of Analysis 1.

Point of Analysis One (PA-2)

Point of Analysis 2 is comprised of one subcatchment area (PRE-2.0). This area includes portions of an existing residential building to the north of the subject parcel and is comprised mainly of woodland and small portions of grass. Runoff from this area travels south via overland flow to Point of Analysis 2.

2.2.1 Pre-Development Calculations

2.2.2 Pre-Development Watershed Plan

Routing Diagram for R5089-0278_PRE
Prepared by Tige & Bond, Printed 1/29/2026
HydroCAD® 10.20-4c s/n 01453 © 2024 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area (acres)	CN	Description (subcatchment-numbers)
0.856	74	>75% Grass cover, Good, HSG C (PRE-1.0, PRE-2.0)
0.029	98	Unconnected pavement, HSG C (PRE-1.0)
0.077	98	Unconnected roofs, HSG C (PRE-1.0, PRE-2.0)
8.164	70	Woods, Good, HSG C (PRE-1.0, PRE-2.0)
9.125	71	TOTAL AREA

Soil Listing (all nodes)

Area (acres)	Soil Group	Subcatchment Numbers
0.000	HSG A	
0.000	HSG B	
9.125	HSG C	PRE-1.0, PRE-2.0
0.000	HSG D	
0.000	Other	
9.125		TOTAL AREA

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPRE-1.0: Runoff Area=89,588 sf 3.29% Impervious Runoff Depth>0.66"
Flow Length=561' Tc=11.1 min CN=72 Runoff=1.15 cfs 0.113 af

SubcatchmentPRE-2.0: Runoff Area=307,898 sf 0.53% Impervious Runoff Depth>0.58"
Flow Length=698' Slope=0.0700 '/' Tc=13.1 min CN=70 Runoff=3.12 cfs 0.340 af

Link PA-1: Inflow=1.15 cfs 0.113 af
Primary=1.15 cfs 0.113 af

Link PA-2: Inflow=3.12 cfs 0.340 af
Primary=3.12 cfs 0.340 af

Total Runoff Area = 9.125 ac Runoff Volume = 0.454 af Average Runoff Depth = 0.60"
98.85% Pervious = 9.020 ac 1.15% Impervious = 0.105 ac

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPRE-1.0: Runoff Area=89,588 sf 3.29% Impervious Runoff Depth>1.48"
Flow Length=561' Tc=11.1 min CN=72 Runoff=2.90 cfs 0.254 af

SubcatchmentPRE-2.0: Runoff Area=307,898 sf 0.53% Impervious Runoff Depth>1.35"
Flow Length=698' Slope=0.0700 '/' Tc=13.1 min CN=70 Runoff=8.42 cfs 0.797 af

Link PA-1: Inflow=2.90 cfs 0.254 af
Primary=2.90 cfs 0.254 af

Link PA-2: Inflow=8.42 cfs 0.797 af
Primary=8.42 cfs 0.797 af

Total Runoff Area = 9.125 ac Runoff Volume = 1.051 af Average Runoff Depth = 1.38"
98.85% Pervious = 9.020 ac 1.15% Impervious = 0.105 ac

Summary for Subcatchment PRE-1.0:

Runoff = 2.90 cfs @ 12.16 hrs, Volume= 0.254 af, Depth> 1.48"
 Routed to Link PA-1 :

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
 Type III 24-hr 10-YR Rainfall=4.04"

Area (sf)	CN	Description
1,703	98	Unconnected roofs, HSG C
33,291	74	>75% Grass cover, Good, HSG C
53,346	70	Woods, Good, HSG C
1,248	98	Unconnected pavement, HSG C
89,588	72	Weighted Average
86,637		96.71% Pervious Area
2,951		3.29% Impervious Area
2,951		100.00% Unconnected

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.3	25	0.0500	0.08		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.75"
1.1	73	0.0500	1.12		Shallow Concentrated Flow, Woodland Kv= 5.0 fps
0.5	60	0.0700	1.85		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
0.9	100	0.1400	1.87		Shallow Concentrated Flow, Woodland Kv= 5.0 fps
1.1	140	0.0900	2.10		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
2.2	163	0.0600	1.22		Shallow Concentrated Flow, Woodland Kv= 5.0 fps
11.1	561	Total			

Summary for Subcatchment PRE-2.0:

Runoff = 8.42 cfs @ 12.20 hrs, Volume= 0.797 af, Depth> 1.35"
 Routed to Link PA-2 :

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
 Type III 24-hr 10-YR Rainfall=4.04"

Area (sf)	CN	Description
1,632	98	Unconnected roofs, HSG C
4,003	74	>75% Grass cover, Good, HSG C
302,263	70	Woods, Good, HSG C
307,898	70	Weighted Average
306,266		99.47% Pervious Area
1,632		0.53% Impervious Area
1,632		100.00% Unconnected

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
4.6	25	0.0700	0.09		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.75"
8.5	673	0.0700	1.32		Shallow Concentrated Flow, Woodland Kv= 5.0 fps
13.1	698	Total			

Summary for Link PA-1:

Inflow Area = 2.057 ac, 3.29% Impervious, Inflow Depth > 1.48" for 10-YR event
 Inflow = 2.90 cfs @ 12.16 hrs, Volume= 0.254 af
 Primary = 2.90 cfs @ 12.16 hrs, Volume= 0.254 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Summary for Link PA-2:

Inflow Area = 7.068 ac, 0.53% Impervious, Inflow Depth > 1.35" for 10-YR event
 Inflow = 8.42 cfs @ 12.20 hrs, Volume= 0.797 af
 Primary = 8.42 cfs @ 12.20 hrs, Volume= 0.797 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPRE-1.0: Runoff Area=89,588 sf 3.29% Impervious Runoff Depth>2.22"
Flow Length=561' Tc=11.1 min CN=72 Runoff=4.44 cfs 0.380 af

SubcatchmentPRE-2.0: Runoff Area=307,898 sf 0.53% Impervious Runoff Depth>2.05"
Flow Length=698' Slope=0.0700 '/' Tc=13.1 min CN=70 Runoff=13.18 cfs 1.209 af

Link PA-1: Inflow=4.44 cfs 0.380 af
Primary=4.44 cfs 0.380 af

Link PA-2: Inflow=13.18 cfs 1.209 af
Primary=13.18 cfs 1.209 af

Total Runoff Area = 9.125 ac Runoff Volume = 1.589 af Average Runoff Depth = 2.09"
98.85% Pervious = 9.020 ac 1.15% Impervious = 0.105 ac

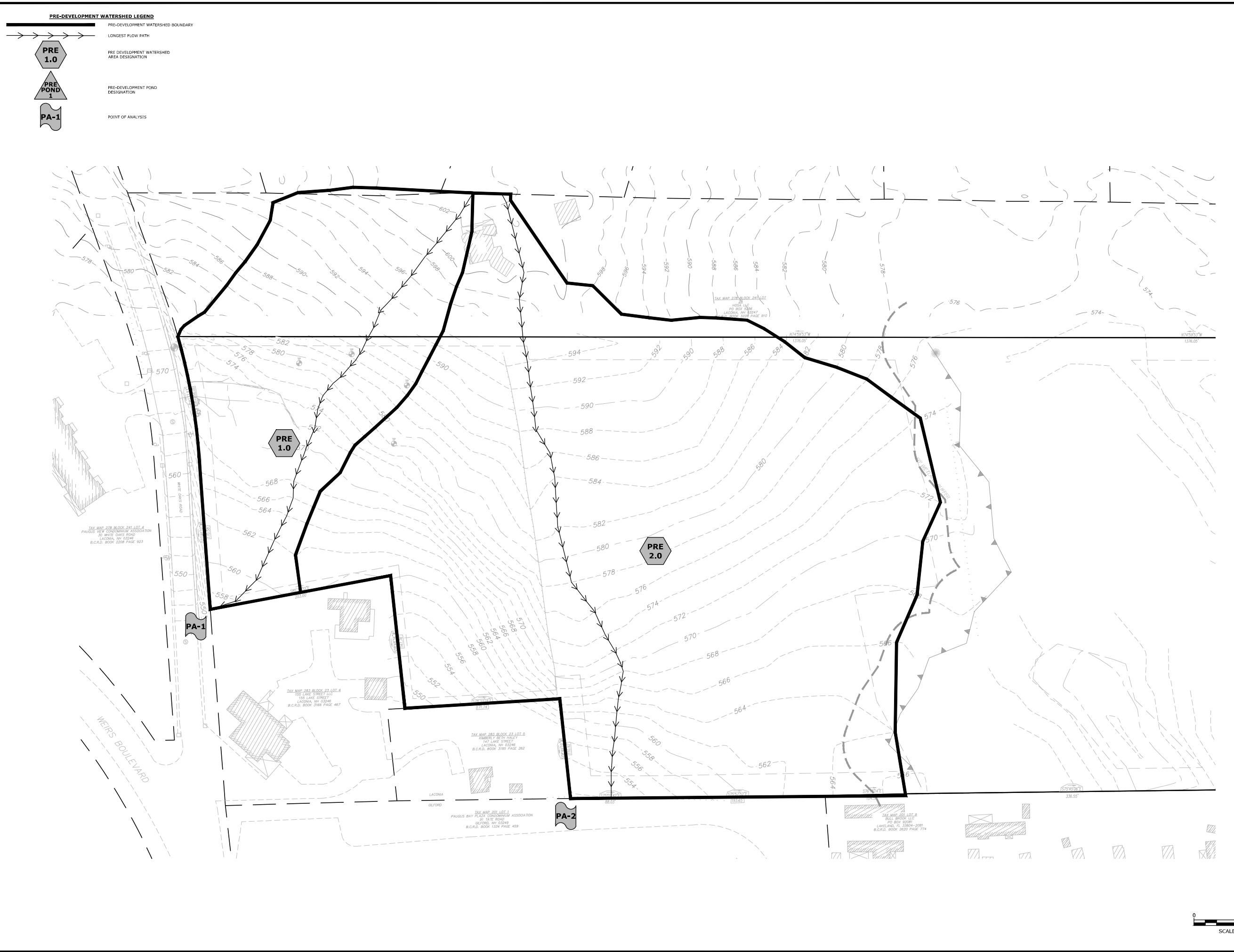
Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPRE-1.0:

Runoff Area=89,588 sf 3.29% Impervious Runoff Depth>2.94"
Flow Length=561' Tc=11.1 min CN=72 Runoff=5.93 cfs 0.504 af

SubcatchmentPRE-2.0:

Runoff Area=307,898 sf 0.53% Impervious Runoff Depth>2.75"
Flow Length=698' Slope=0.0700 '/' Tc=13.1 min CN=70 Runoff=17.87 cfs 1.620 af


Link PA-1:

Inflow=5.93 cfs 0.504 af
Primary=5.93 cfs 0.504 af

Link PA-2:

Inflow=17.87 cfs 1.620 af
Primary=17.87 cfs 1.620 af

Total Runoff Area = 9.125 ac Runoff Volume = 2.124 af Average Runoff Depth = 2.79"
98.85% Pervious = 9.020 ac 1.15% Impervious = 0.105 ac

THIS DOCUMENT IS RELEASED
TEMPORARILY FOR PROGRESS REVIEW ONLY
IT IS NOT INTENDED FOR BIDDING OR
CONSTRUCTION PURPOSES.

**33 WHITE
OAKS
SUBDIVISION**

33 White Oaks
Road

Laconia, New
Hampshire

1	1/30/2026	TRC Submission
ARK	DATE	DESCRIPTION
PROJECT NO:	R5089-027B	
DATE:	01/30/2026	
FILE:	R5089-027B-C-HYDRO.dwg	
DRAWN BY:	M.CURHENY/MLR/CRIMMINS/CRIMMINS/CRUIK	
DESIGNED BY:	C.KRZCUIK	
CHECKED BY:	N.HANSEN	
APPROVED BY:	P.CRIMMINS	

PRE-DEVELOPMENT WATERSHED PLAN

CALE: AS SHOWN

C-801

2.3 Post-Development Conditions

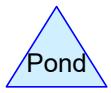
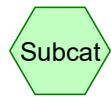
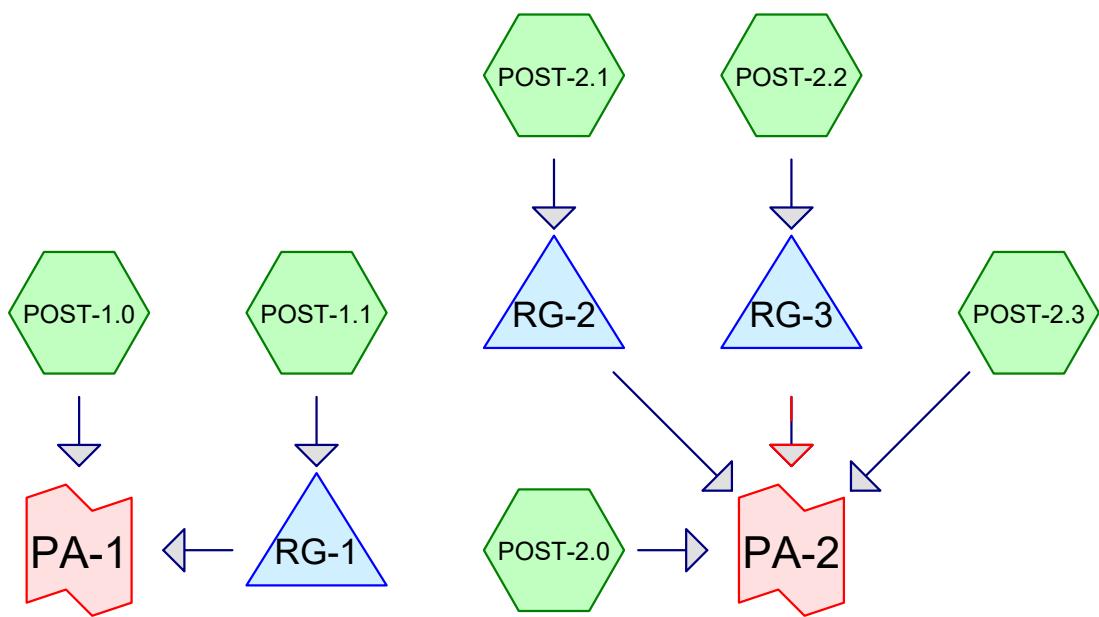
To analyze the post-development condition, the site has been modeled utilizing the same two distinct points of analysis (PA-1 & PA-2) as the pre-development conditions. These points of analysis and watersheds are depicted on the plan entitled "Post-Development Watershed Plan", Sheet C-802.

The points of analysis and their contributing watershed areas are described below:

Point of Analysis One (PA-1)

Point of Analysis 1 is comprised of two Subcatchment area (POST-1.0 & POST-1.1) POST-1.0 includes a combination of grassed, wooded areas to the north and west of the proposed work along White Oaks Rd. Runoff from this area travels southwest via overland flow to Point of Analysis 1.

POST-1.1 is comprised of a portion of the proposed street, proposed residential houses and the surrounding grassed lawn area. Additionally this area captures runoff from the neighboring residential lot consisting of the residential building, woods, and grass cover. Runoff from this subcatchment travels via overland flow to a closed drainage system ultimately discharging to a surface sediment forebay and Rain Garden (RG-1). This treated stormwater is discharged to the ground surface adjacent to White Oaks Rd.




Point of Analysis One (PA-2)

Point of Analysis 2 is comprised of four subcatchment areas (POST-2.0, POST-2.1, POST-2.2, & POST-2.3). POST-2.0 and POST-2.3 are very similar in nature and include the area surrounding the proposed development which comprise of residential buildings, grass, and wooded areas. Runoff from these areas travels via overland flow to either the southeast or southwest to Point of Analysis 2.

POST-2.1 and POST-2.2 are very similar in nature to POST-1.1 and are comprised of the main project area including the proposed streets, residential buildings, driveways and surrounding grassed lawns. Runoff from these areas travels via grass lines swales along the proposed streets to a closed drainage system and ultimately their own bioretention rain gardens (RG-2 & RG-3). A sediment forebay is proposed for RG-2 for the purposes of pre treatment, whereas RG-3 proposes a pretreatment swale between the subject parcels. Runoff from these rain gardens discharges to the southwest and southeast to Point of Analysis 2.

2.3.1 Post-Development Calculations

2.3.2 Post-Development Watershed Plan

Routing Diagram for R5089-0278_POST
Prepared by Tige & Bond, Printed 1/29/2026
HydroCAD® 10.20-4c s/n 01453 © 2024 HydroCAD Software Solutions LLC

R5089-0278_POST

Prepared by Tighe & Bond

HydroCAD® 10.20-4c s/n 01453 © 2024 HydroCAD Software Solutions LLC

Printed 1/29/2026

Page 2

Area Listing (selected nodes)

Area (acres)	CN	Description (subcatchment-numbers)
6.161	74	>75% Grass cover, Good, HSG C (POST-1.0, POST-1.1, POST-2.0, POST-2.1, POST-2.2, POST-2.3)
1.247	98	Unconnected pavement, HSG C (POST-1.0, POST-1.1, POST-2.1, POST-2.2)
1.034	98	Unconnected roofs, HSG C (POST-1.1, POST-2.0, POST-2.1, POST-2.2, POST-2.3)
0.683	70	Woods, Good, HSG C (POST-1.0, POST-2.0, POST-2.3)
9.125	80	TOTAL AREA

R5089-0278_POST

Prepared by Tighe & Bond

HydroCAD® 10.20-4c s/n 01453 © 2024 HydroCAD Software Solutions LLC

Printed 1/29/2026

Page 3

Soil Listing (selected nodes)

Area (acres)	Soil Group	Subcatchment Numbers
0.000	HSG A	
0.000	HSG B	
9.125	HSG C	POST-1.0, POST-1.1, POST-2.0, POST-2.1, POST-2.2, POST-2.3
0.000	HSG D	
0.000	Other	
9.125		TOTAL AREA

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPOST-1.0:	Runoff Area=9,807 sf 5.62% Impervious Runoff Depth>0.75" Flow Length=329' Tc=6.5 min CN=74 Runoff=0.18 cfs 0.014 af
SubcatchmentPOST-1.1:	Runoff Area=136,983 sf 23.52% Impervious Runoff Depth>0.90" Flow Length=404' Tc=7.9 min UI Adjusted CN=77 Runoff=2.91 cfs 0.236 af
SubcatchmentPOST-2.0:	Runoff Area=29,499 sf 11.75% Impervious Runoff Depth>0.80" Flow Length=145' Tc=6.0 min UI Adjusted CN=75 Runoff=0.58 cfs 0.045 af
SubcatchmentPOST-2.1:	Runoff Area=69,620 sf 44.00% Impervious Runoff Depth>1.38" Flow Length=308' Tc=6.0 min CN=85 Runoff=2.53 cfs 0.184 af
SubcatchmentPOST-2.2:	Runoff Area=77,713 sf 41.08% Impervious Runoff Depth>1.31" Flow Length=197' Tc=6.0 min CN=84 Runoff=2.68 cfs 0.195 af
SubcatchmentPOST-2.3:	Runoff Area=73,864 sf 0.74% Impervious Runoff Depth>0.71" Flow Length=486' Tc=9.8 min CN=73 Runoff=1.09 cfs 0.100 af
Pond RG-1:	Peak Elev=558.03' Storage=3,843 cf Inflow=2.91 cfs 0.236 af Outflow=0.72 cfs 0.196 af
Pond RG-2:	Peak Elev=559.99' Storage=3,183 cf Inflow=2.53 cfs 0.184 af Outflow=0.85 cfs 0.157 af
Pond RG-3:	Peak Elev=573.73' Storage=4,442 cf Inflow=2.68 cfs 0.195 af Primary=0.23 cfs 0.140 af Secondary=0.00 cfs 0.000 af Outflow=0.23 cfs 0.140 af
Link PA-1:	Inflow=0.76 cfs 0.210 af Primary=0.76 cfs 0.210 af
Link PA-2:	Inflow=1.98 cfs 0.442 af Primary=1.98 cfs 0.442 af

Total Runoff Area = 9.125 ac Runoff Volume = 0.774 af Average Runoff Depth = 1.02"
75.01% Pervious = 6.844 ac 24.99% Impervious = 2.281 ac

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPOST-1.0:	Runoff Area=9,807 sf 5.62% Impervious Runoff Depth>1.62" Flow Length=329' Tc=6.5 min CN=74 Runoff=0.41 cfs 0.030 af
SubcatchmentPOST-1.1:	Runoff Area=136,983 sf 23.52% Impervious Runoff Depth>1.84" Flow Length=404' Tc=7.9 min UI Adjusted CN=77 Runoff=6.23 cfs 0.482 af
SubcatchmentPOST-2.0:	Runoff Area=29,499 sf 11.75% Impervious Runoff Depth>1.69" Flow Length=145' Tc=6.0 min UI Adjusted CN=75 Runoff=1.30 cfs 0.096 af
SubcatchmentPOST-2.1:	Runoff Area=69,620 sf 44.00% Impervious Runoff Depth>2.49" Flow Length=308' Tc=6.0 min CN=85 Runoff=4.56 cfs 0.332 af
SubcatchmentPOST-2.2:	Runoff Area=77,713 sf 41.08% Impervious Runoff Depth>2.40" Flow Length=197' Tc=6.0 min CN=84 Runoff=4.93 cfs 0.357 af
SubcatchmentPOST-2.3:	Runoff Area=73,864 sf 0.74% Impervious Runoff Depth>1.55" Flow Length=486' Tc=9.8 min CN=73 Runoff=2.62 cfs 0.219 af
Pond RG-1:	Peak Elev=559.35' Storage=7,593 cf Inflow=6.23 cfs 0.482 af Outflow=1.79 cfs 0.428 af
Pond RG-2:	Peak Elev=560.84' Storage=4,843 cf Inflow=4.56 cfs 0.332 af Outflow=1.98 cfs 0.298 af
Pond RG-3:	Peak Elev=574.10' Storage=6,017 cf Inflow=4.93 cfs 0.357 af Primary=1.70 cfs 0.294 af Secondary=0.00 cfs 0.000 af Outflow=1.70 cfs 0.294 af
Link PA-1:	Inflow=1.91 cfs 0.459 af Primary=1.91 cfs 0.459 af
Link PA-2:	Inflow=7.17 cfs 0.907 af Primary=7.17 cfs 0.907 af

Total Runoff Area = 9.125 ac Runoff Volume = 1.517 af Average Runoff Depth = 2.00"
75.01% Pervious = 6.844 ac 24.99% Impervious = 2.281 ac

Summary for Subcatchment POST-1.0:

Runoff = 0.41 cfs @ 12.10 hrs, Volume= 0.030 af, Depth> 1.62"
 Routed to Link PA-1 :

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
 Type III 24-hr 10-YR Rainfall=4.04"

Area (sf)	CN	Description			
0	98	Unconnected roofs, HSG C			
7,158	74	>75% Grass cover, Good, HSG C			
2,098	70	Woods, Good, HSG C			
551	98	Unconnected pavement, HSG C			
9,807	74	Weighted Average			
9,256		94.38% Pervious Area			
551		5.62% Impervious Area			
551		100.00% Unconnected			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
4.2	25	0.0885	0.10		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.75"
0.3	23	0.0885	1.49		Shallow Concentrated Flow, Woodland Kv= 5.0 fps
0.8	97	0.0927	2.13		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
0.7	49	0.0612	1.24		Shallow Concentrated Flow, Woodland Kv= 5.0 fps
0.1	30	0.2333	3.38		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
0.4	105	0.0952	4.63		Shallow Concentrated Flow, Grassed Waterway Kv= 15.0 fps
6.5	329	Total			

Summary for Subcatchment POST-1.1:

Runoff = 6.23 cfs @ 12.12 hrs, Volume= 0.482 af, Depth> 1.84"
 Routed to Pond RG-1 :

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
 Type III 24-hr 10-YR Rainfall=4.04"

Area (sf)	CN	Adj	Description	
17,066	98		Unconnected roofs, HSG C	
104,758	74		>75% Grass cover, Good, HSG C	
0	70		Woods, Good, HSG C	
15,159	98		Unconnected pavement, HSG C	
136,983	80	77	Weighted Average, UI Adjusted	
104,758			76.48% Pervious Area	
32,225			23.52% Impervious Area	
32,225			100.00% Unconnected	

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
4.7	25	0.0689	0.09		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.75"
0.8	62	0.0689	1.31		Shallow Concentrated Flow, Woodland Kv= 5.0 fps
0.7	82	0.0823	2.01		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
0.6	58	0.1200	1.73		Shallow Concentrated Flow, Woodland Kv= 5.0 fps
0.2	39	0.2307	3.36		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
0.9	138	0.0289	2.55		Shallow Concentrated Flow, Grassed Waterway Kv= 15.0 fps
7.9	404	Total			

Summary for Subcatchment POST-2.0:

Runoff = 1.30 cfs @ 12.10 hrs, Volume= 0.096 af, Depth> 1.69"
Routed to Link PA-2 :

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Type III 24-hr 10-YR Rainfall=4.04"

Area (sf)	CN	Adj	Description
3,465	98		Unconnected roofs, HSG C
23,163	74		>75% Grass cover, Good, HSG C
2,871	70		Woods, Good, HSG C
0	98		Unconnected pavement, HSG C
29,499	76	75	Weighted Average, UI Adjusted
26,034			88.25% Pervious Area
3,465			11.75% Impervious Area
3,465			100.00% Unconnected

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
1.9	36	0.1940	0.32		Sheet Flow, Grass: Short n= 0.150 P2= 2.75"
0.3	39	0.0890	2.09		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
0.2	45	0.2889	3.76		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
0.3	25	0.0847	1.46		Shallow Concentrated Flow, Woodland Kv= 5.0 fps

2.7 145 Total, Increased to minimum Tc = 6.0 min

Summary for Subcatchment POST-2.1:

Runoff = 4.56 cfs @ 12.09 hrs, Volume= 0.332 af, Depth> 2.49"
 Routed to Pond RG-2 :

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
 Type III 24-hr 10-YR Rainfall=4.04"

Area (sf)	CN	Description
8,418	98	Unconnected roofs, HSG C
38,989	74	>75% Grass cover, Good, HSG C
0	70	Woods, Good, HSG C
22,213	98	Unconnected pavement, HSG C
69,620	85	Weighted Average
38,989		56.00% Pervious Area
30,631		44.00% Impervious Area
30,631		100.00% Unconnected

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
0.7	15	0.3850	0.35		Sheet Flow, Grass: Short n= 0.150 P2= 2.75"
2.1	293	0.0247	2.36		Shallow Concentrated Flow, Grassed Waterway Kv= 15.0 fps
2.8	308	Total, Increased to minimum Tc = 6.0 min			

Summary for Subcatchment POST-2.2:

Runoff = 4.93 cfs @ 12.09 hrs, Volume= 0.357 af, Depth> 2.40"
 Routed to Pond RG-3 :

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
 Type III 24-hr 10-YR Rainfall=4.04"

Area (sf)	CN	Description
15,535	98	Unconnected roofs, HSG C
45,787	74	>75% Grass cover, Good, HSG C
0	70	Woods, Good, HSG C
16,391	98	Unconnected pavement, HSG C
77,713	84	Weighted Average
45,787		58.92% Pervious Area
31,926		41.08% Impervious Area
31,926		100.00% Unconnected

R5089-0278_POST

Prepared by Tighe & Bond

HydroCAD® 10.20-4c s/n 01453 © 2024 HydroCAD Software Solutions LLC

Type III 24-hr 10-YR Rainfall=4.04"

Printed 1/29/2026

Page 9

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
3.6	50	0.0714	0.23		Sheet Flow, Grass: Short n= 0.150 P2= 2.75"
0.4	48	0.0714	1.87		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
1.6	99	0.0050	1.06		Shallow Concentrated Flow, Grassed Waterway Kv= 15.0 fps
5.6	197	Total, Increased to minimum Tc = 6.0 min			

Summary for Subcatchment POST-2.3:

Runoff = 2.62 cfs @ 12.15 hrs, Volume= 0.219 af, Depth> 1.55"
 Routed to Link PA-2 :

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
 Type III 24-hr 10-YR Rainfall=4.04"

Area (sf)	CN	Description
550	98	Unconnected roofs, HSG C
48,519	74	>75% Grass cover, Good, HSG C
24,795	70	Woods, Good, HSG C
0	98	Unconnected pavement, HSG C
73,864	73	Weighted Average
73,314		99.26% Pervious Area
550		0.74% Impervious Area
550		100.00% Unconnected

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
4.1	25	0.0964	0.10		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.75"
0.6	51	0.0764	1.38		Shallow Concentrated Flow, Woodland Kv= 5.0 fps
4.3	358	0.0391	1.38		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
0.8	52	0.0519	1.14		Shallow Concentrated Flow, Woodland Kv= 5.0 fps
9.8	486	Total			

Summary for Pond RG-1:

Inflow Area = 3.145 ac, 23.52% Impervious, Inflow Depth > 1.84" for 10-YR event
 Inflow = 6.23 cfs @ 12.12 hrs, Volume= 0.482 af
 Outflow = 1.79 cfs @ 12.52 hrs, Volume= 0.428 af, Atten= 71%, Lag= 24.1 min
 Primary = 1.79 cfs @ 12.52 hrs, Volume= 0.428 af

Routed to Link PA-1 :

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

R5089-0278_POST

Prepared by Tighe & Bond

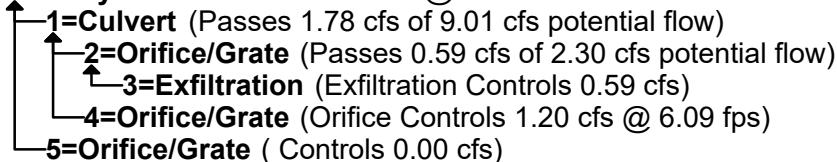
HydroCAD® 10.20-4c s/n 01453 © 2024 HydroCAD Software Solutions LLC

Type III 24-hr 10-YR Rainfall=4.04"

Printed 1/29/2026

Page 10

Peak Elev= 559.35' @ 12.52 hrs Surf.Area= 3,654 sf Storage= 7,593 cf
 Flood Elev= 562.50' Surf.Area= 6,132 sf Storage= 20,801 cf


Plug-Flow detention time= 114.4 min calculated for 0.428 af (89% of inflow)
 Center-of-Mass det. time= 61.7 min (902.5 - 840.9)

Volume	Invert	Avail.Storage	Storage Description	
#1	553.17'	20,801 cf	Custom Stage Data (Prismatic)	Listed below (Recalc)
Elevation (feet)	Surf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
553.17	1,107	0.0	0	0
554.25	1,107	40.0	478	478
556.00	1,107	10.0	194	672
558.00	1,995	100.0	3,102	3,774
560.00	4,450	100.0	6,445	10,219
562.00	6,132	100.0	10,582	20,801

Device	Routing	Invert	Outlet Devices
#1	Primary	553.17'	12.0" Round Culvert L= 41.0' Ke= 0.500 Inlet / Outlet Invert= 553.17' / 552.25' S= 0.0224 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 0.79 sf
#2	Device 1	553.17'	6.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#3	Device 2	556.00'	10.000 in/hr Exfiltration over Surface area above 556.00' Excluded Surface area = 1,107 sf
#4	Device 1	557.50'	6.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#5	Primary	560.00'	15.0" W x 18.0" H Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads

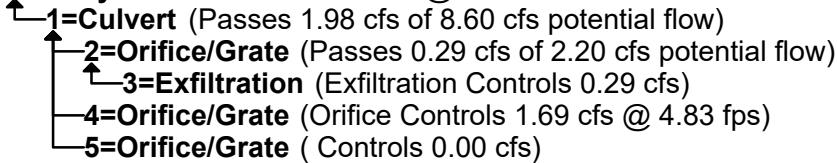
Primary OutFlow Max=1.78 cfs @ 12.52 hrs HW=559.35' TW=0.00' (Dynamic Tailwater)

Summary for Pond RG-2:

Inflow Area = 1.598 ac, 44.00% Impervious, Inflow Depth > 2.49" for 10-YR event
 Inflow = 4.56 cfs @ 12.09 hrs, Volume= 0.332 af
 Outflow = 1.98 cfs @ 12.31 hrs, Volume= 0.298 af, Atten= 57%, Lag= 12.9 min
 Primary = 1.98 cfs @ 12.31 hrs, Volume= 0.298 af

Routed to Link PA-2 :

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
 Peak Elev= 560.84' @ 12.31 hrs Surf.Area= 2,175 sf Storage= 4,843 cf
 Flood Elev= 562.50' Surf.Area= 2,781 sf Storage= 7,711 cf


Plug-Flow detention time= 120.4 min calculated for 0.298 af (90% of inflow)
 Center-of-Mass det. time= 71.4 min (887.0 - 815.5)

Volume	Invert	Avail.Storage	Storage Description	
#1	555.17'	7,711 cf	Custom Stage Data (Prismatic)	Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
555.17	911	0.0	0	0
556.25	911	40.0	394	394
558.00	911	10.0	159	553
560.00	1,733	100.0	2,644	3,197
562.00	2,781	100.0	4,514	7,711

Device	Routing	Invert	Outlet Devices	
#1	Primary	555.17'	12.0" Round Culvert L= 37.0' Ke= 0.500 Inlet / Outlet Invert= 555.17' / 554.50' S= 0.0181 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 0.79 sf	
#2	Device 1	555.17'	6.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads	
#3	Device 2	558.00'	10.000 in/hr Exfiltration over Surface area above 558.00' Excluded Surface area = 911 sf	
#4	Device 1	559.50'	8.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads	
#5	Device 1	561.50'	15.0" W x 18.0" H Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads	

Primary OutFlow Max=1.98 cfs @ 12.31 hrs HW=560.84' TW=0.00' (Dynamic Tailwater)

Summary for Pond RG-3:

[92] Warning: Device #5 is above defined storage

Inflow Area = 1.784 ac, 41.08% Impervious, Inflow Depth > 2.40" for 10-YR event
 Inflow = 4.93 cfs @ 12.09 hrs, Volume= 0.357 af
 Outflow = 1.70 cfs @ 12.39 hrs, Volume= 0.294 af, Atten= 65%, Lag= 18.1 min
 Primary = 1.70 cfs @ 12.39 hrs, Volume= 0.294 af
 Routed to Link PA-2 :
 Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af
 Routed to Link PA-2 :

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
 Peak Elev= 574.10' @ 12.39 hrs Surf.Area= 4,614 sf Storage= 6,017 cf
 Flood Elev= 576.25' Surf.Area= 6,526 sf Storage= 11,045 cf

Plug-Flow detention time= 167.8 min calculated for 0.294 af (82% of inflow)
 Center-of-Mass det. time= 96.7 min (915.5 - 818.7)

Volume	Invert	Avail.Storage	Storage Description
#1	570.17'	11,045 cf	Custom Stage Data (Prismatic) Listed below (Recalc)
Elevation (feet)	Surf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)
570.17	3,048	0.0	0
571.25	3,048	40.0	1,317
573.00	3,048	10.0	533
574.00	4,408	100.0	3,728
575.00	6,526	100.0	5,467
			11,045

Device	Routing	Invert	Outlet Devices
#1	Primary	570.17'	6.0" Round Culvert L= 30.0' Ke= 0.500 Inlet / Outlet Invert= 570.17' / 569.50' S= 0.0223 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 0.20 sf
#2	Device 1	570.17'	6.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#3	Device 2	573.00'	10.000 in/hr Exfiltration over Surface area above 573.00' Excluded Surface area = 3,048 sf
#4	Device 1	573.75'	15.0" W x 18.0" H Vert. Orifice/Grate X 104.00 C= 0.600 Limited to weir flow at low heads
#5	Secondary	576.00'	Custom Weir/Orifice, Cv= 2.62 (C= 3.28) Head (feet) 0.00 0.50 Width (feet) 4.00 7.00

Primary OutFlow Max=1.70 cfs @ 12.39 hrs HW=574.10' TW=0.00' (Dynamic Tailwater)

↑ 1=Culvert (Barrel Controls 1.70 cfs @ 8.66 fps)

↑ 2=Orifice/Grate (Passes < 1.81 cfs potential flow)

↑ 3=Exfiltration (Passes < 0.36 cfs potential flow)

↑ 4=Orifice/Grate (Passes < 85.19 cfs potential flow)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=570.17' TW=0.00' (Dynamic Tailwater)

↑ 5=Custom Weir/Orifice (Controls 0.00 cfs)

Summary for Link PA-1:

Inflow Area = 3.370 ac, 22.33% Impervious, Inflow Depth > 1.63" for 10-YR event
 Inflow = 1.91 cfs @ 12.43 hrs, Volume= 0.459 af
 Primary = 1.91 cfs @ 12.43 hrs, Volume= 0.459 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Summary for Link PA-2:

Inflow Area = 5.755 ac, 26.55% Impervious, Inflow Depth > 1.89" for 10-YR event
 Inflow = 7.17 cfs @ 12.15 hrs, Volume= 0.907 af
 Primary = 7.17 cfs @ 12.15 hrs, Volume= 0.907 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPOST-1.0:	Runoff Area=9,807 sf 5.62% Impervious Runoff Depth>2.39" Flow Length=329' Tc=6.5 min CN=74 Runoff=0.61 cfs 0.045 af
SubcatchmentPOST-1.1:	Runoff Area=136,983 sf 23.52% Impervious Runoff Depth>2.64" Flow Length=404' Tc=7.9 min UI Adjusted CN=77 Runoff=9.02 cfs 0.693 af
SubcatchmentPOST-2.0:	Runoff Area=29,499 sf 11.75% Impervious Runoff Depth>2.47" Flow Length=145' Tc=6.0 min UI Adjusted CN=75 Runoff=1.92 cfs 0.139 af
SubcatchmentPOST-2.1:	Runoff Area=69,620 sf 44.00% Impervious Runoff Depth>3.39" Flow Length=308' Tc=6.0 min CN=85 Runoff=6.16 cfs 0.452 af
SubcatchmentPOST-2.2:	Runoff Area=77,713 sf 41.08% Impervious Runoff Depth>3.30" Flow Length=197' Tc=6.0 min CN=84 Runoff=6.70 cfs 0.490 af
SubcatchmentPOST-2.3:	Runoff Area=73,864 sf 0.74% Impervious Runoff Depth>2.30" Flow Length=486' Tc=9.8 min CN=73 Runoff=3.95 cfs 0.325 af
Pond RG-1:	Peak Elev=560.20' Storage=11,140 cf Inflow=9.02 cfs 0.693 af Outflow=2.66 cfs 0.631 af
Pond RG-2:	Peak Elev=561.47' Storage=6,315 cf Inflow=6.16 cfs 0.452 af Outflow=2.52 cfs 0.413 af
Pond RG-3:	Peak Elev=574.60' Storage=8,630 cf Inflow=6.70 cfs 0.490 af Primary=1.80 cfs 0.421 af Secondary=0.00 cfs 0.000 af Outflow=1.80 cfs 0.421 af
Link PA-1:	Inflow=2.83 cfs 0.675 af Primary=2.83 cfs 0.675 af
Link PA-2:	Inflow=9.63 cfs 1.298 af Primary=9.63 cfs 1.298 af

Total Runoff Area = 9.125 ac Runoff Volume = 2.144 af Average Runoff Depth = 2.82"
75.01% Pervious = 6.844 ac 24.99% Impervious = 2.281 ac

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPOST-1.0: Runoff Area=9,807 sf 5.62% Impervious Runoff Depth>3.13"
Flow Length=329' Tc=6.5 min CN=74 Runoff=0.80 cfs 0.059 af

SubcatchmentPOST-1.1: Runoff Area=136,983 sf 23.52% Impervious Runoff Depth>3.42"
Flow Length=404' Tc=7.9 min UI Adjusted CN=77 Runoff=11.68 cfs 0.897 af

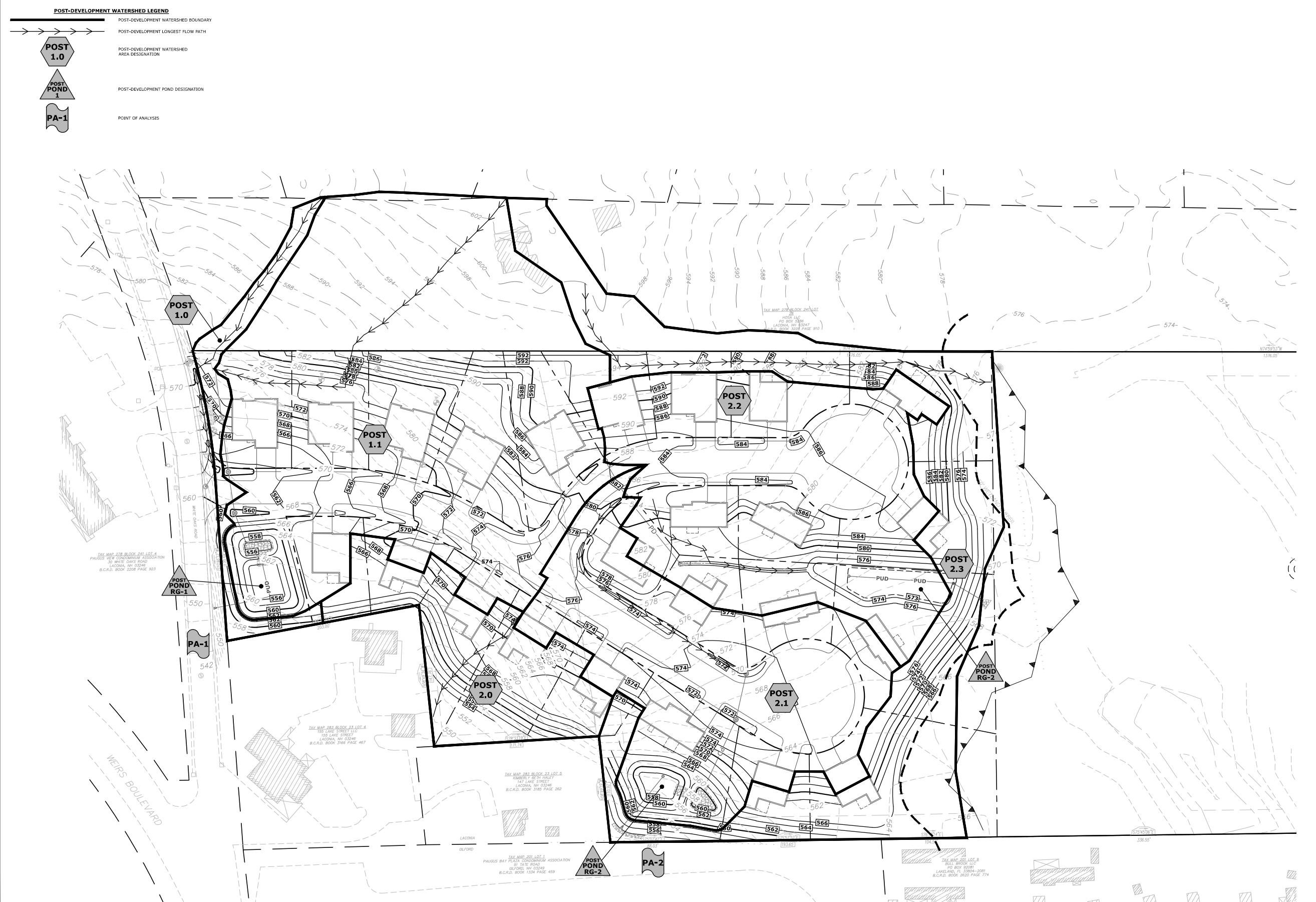
SubcatchmentPOST-2.0: Runoff Area=29,499 sf 11.75% Impervious Runoff Depth>3.23"
Flow Length=145' Tc=6.0 min UI Adjusted CN=75 Runoff=2.52 cfs 0.182 af

SubcatchmentPOST-2.1: Runoff Area=69,620 sf 44.00% Impervious Runoff Depth>4.24"
Flow Length=308' Tc=6.0 min CN=85 Runoff=7.64 cfs 0.565 af

SubcatchmentPOST-2.2: Runoff Area=77,713 sf 41.08% Impervious Runoff Depth>4.14"
Flow Length=197' Tc=6.0 min CN=84 Runoff=8.35 cfs 0.615 af

SubcatchmentPOST-2.3: Runoff Area=73,864 sf 0.74% Impervious Runoff Depth>3.03"
Flow Length=486' Tc=9.8 min CN=73 Runoff=5.24 cfs 0.429 af

Pond RG-1: Peak Elev=560.65' Storage=13,295 cf Inflow=11.68 cfs 0.897 af
Outflow=4.62 cfs 0.831 af


Pond RG-2: Peak Elev=561.86' Storage=7,331 cf Inflow=7.64 cfs 0.565 af
Outflow=3.68 cfs 0.521 af

Pond RG-3: Peak Elev=574.99' Storage=10,975 cf Inflow=8.35 cfs 0.615 af
Primary=1.88 cfs 0.542 af Secondary=0.00 cfs 0.000 af Outflow=1.88 cfs 0.542 af

Link PA-1: Inflow=4.91 cfs 0.889 af
Primary=4.91 cfs 0.889 af

Link PA-2: Inflow=12.09 cfs 1.673 af
Primary=12.09 cfs 1.673 af

Total Runoff Area = 9.125 ac Runoff Volume = 2.747 af Average Runoff Depth = 3.61"
75.01% Pervious = 6.844 ac 24.99% Impervious = 2.281 ac

33 WHITE OAKS SUBDIVISION

33 White Oaks Road

Laconia, New Hampshire

1 1/30/2026 TRC Submission

MARK DATE DESCRIPTION

PROJECT NO: R5089-027B

DATE: 01/30/2026

FILE: R5089-027B-C-HYDRO.dwg

DRAWN BY: M.CURLEY/C.KRZCUIK

DESIGNED BY: C.KRZCUIK

CHECKED BY: N.HANSEN

APPROVED BY: P.CRIMMINS

POST-DEVELOPMENT WATERSHED PLAN

SCALE: AS SHOWN

C-803

2.4 Peak Rate Comparisons

The following table summarizes and compares the pre- and post-development peak runoff rates from the 2-year, 10-year, 25- year, and 50-year storm events at each point of analysis.

TABLE 2-1 Comparison of Pre and Post Development Flows

Point of Analysis	Pre/Post 2-Year Storm (cfs)	Pre/Post 10-Year Storm (cfs)	Pre/Post 25-Year Storm (cfs)	Pre/Post 50-Year Storm (cfs)
PA-1	1.15/ 0.76	2.90/ 1.91	4.44/ 2.83	5.93/ 4.91
PA-2	3.12/ 1.98	8.42/ 7.17	13.18/ 9.63	17.87/ 12.09

2.5 Mitigation Description

2.5.1 Mitigation Calculations

The proposed project area has been evaluated to treat the required water quality volume (WQV) per the requirements of Env-Wq 1500. These calculations have been provided in Section 3 of this report (BMP Worksheets).

2.5.2 Pre-Treatment Methods for Protecting Water Quality

Pretreatment methods for protecting water quality on this site include sediment forebays and pretreatment swales.

2.5.3 Treatment Methods for Protecting Water Quality

Treatment for the site is provided by means of three surface bioretention rain gardens. Each rain garden has been sized to treat the required Water Quality Volume for its respective subcatchment areas. The BMP Worksheets for these treatment practices have been included in Section 3 of this report.

SECTION 3 | BMP Worksheets

FILTRATION PRACTICE DESIGN CRITERIA (Env-Wq 1508.08)

RG 1

Type/Node Name: _____

Enter the type of filtration practice (e.g., bioretention system) and the node name in the drainage analysis, if applicable.

3.15	ac	Check if you reviewed the restrictions on unlined systems outlined in Env-Wq 1508.08(a). A = Area draining to the practice
0.73	ac	A_I = Impervious area draining to the practice
0.23	decimal	I = Percent impervious area draining to the practice, in decimal form
0.26	unitless	R_V = Runoff coefficient = $0.05 + (0.9 \times I)$
0.81	ac-in	$WQV = 1" \times R_V \times A$
2,956	cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")
739	cf	25% x WQV (check calc for sediment forebay volume)
2,217	cf	75% x WQV (check calc for surface sand filter volume)
		Method of Pretreatment? (not required for clean or roof runoff)
1,036	cf	V_{SED} = Sediment forebay volume, if used for pretreatment > 25%WQV
Calculate time to drain if system IS NOT underdrained:		
1,107	sf	A_{SA} = Surface area of the practice
N/A	iph	$K_{sat,DESIGN}$ = Design infiltration rate ¹
If K_{sat} (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?		
Yes	Yes/No	(Use the calculations below)
-	hours	$T_{DRAIN} = V / (A_{SA} * I_{DESIGN})$ ≤ 72-hrs
Calculate time to drain if system IS underdrained:		
557.47	ft	E_{WQV} = Elevation of WQV (attach stage-storage table)
0.15	cfs	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table)
10.95	hours	$T_{DRAIN} = 2WQV/Q_{WQV}$ ≤ 72-hrs
554.25	feet	E_{FC} = Elevation of the bottom of the filter course material ²
553.17	feet	E_{UD} = Invert elevation of the underdrain (UD), if applicable
feet		E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pit)
feet		E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test pit)
1.08	feet	$D_{FC \text{ to } UD}$ = Depth to UD from the bottom of the filter course ≥ 1'
554.25	feet	$D_{FC \text{ to } ROCK}$ = Depth to bedrock from the bottom of the filter course ≥ 1'
554.25	feet	$D_{FC \text{ to } SHWT}$ = Depth to SHWT from the bottom of the filter course ≥ 1'
560.65	ft	Peak elevation of the 50-year storm event (infiltration can be used in analysis)
562.50	ft	Elevation of the top of the practice
YES		50 peak elevation ≤ Elevation of the top of the practice ← yes
If a surface sand filter or underground sand filter is proposed:		
YES	ac	Drainage Area check. < 10 ac
	cf	V = Volume of storage ³ (attach a stage-storage table) ≥ 75%WQV
	inches	D_{FC} = Filter course thickness 18", or 24" if within GPA
Sheet		Note what sheet in the plan set contains the filter course specification.
Yes/No		Access grate provided? ← yes

If a bioretention area is proposed:	
YES	ac
2,299	cf
18.0	inches
Sheet	C-605
3.0	:1
Sheet	C-605
If porous pavement is proposed:	
acres	Type of pavement proposed (Concrete? Asphalt? Pavers? Etc.)
:1	Ratio of the contributing area to the pervious surface area
inches	D_{FC} = Filter course thickness
Sheet	Note what sheet in the plan set contains the filter course spec.

1. Rate of the limiting layer (either the filter course or the underlying soil). $K_{sat_{design}}$ includes factor of safety. See Env-Wq 1504.14 for guidance on determining the infiltration rate.
2. See lines 34, 40 and 48 for required depths of filter media.
3. Volume without depending on infiltration. The volume includes the storage above the filter (but below the invert of the outlet structure, if any), the filter media voids, and the pretreatment area. The storage above the filter media shall not include the volume above the outlet structure, if any.

Designer's Notes:

Stage-Area-Storage for Pond RG-1:

Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)
553.17	1,107	0	558.37	2,449	4,596
553.27	1,107	44	558.47	2,572	4,847
553.37	1,107	89	558.57	2,695	5,111
553.47	1,107	133	558.67	2,817	5,386
553.57	1,107	177	558.77	2,940	5,674
553.67	1,107	221	558.87	3,063	5,974
553.77	1,107	266	Volume below Filter Media		
553.87	1,107	310	186		
553.97	1,107	354	308		
554.07	1,107	399	559.17	3,431	6,948
554.17	1,107	443	559.27	3,554	7,298
554.27	1,107	480	559.37	3,677	7,659
554.37	1,107	492	559.47	3,799	8,033
554.47	1,107	503	559.57	3,922	8,419
554.57	1,107	514	559.67	4,045	8,817
554.67	1,107	525	559.77	4,168	9,228
554.77	1,107	536	559.87	4,290	9,651
554.87	1,107	547	559.97	4,413	10,086
554.97	1,107	558	560.07	4,509	10,533
555.07	1,107	569	560.17	4,593	10,988
555.17	1,107	580	560.27	4,677	11,451
555.27	1,107	591	560.37	4,761	11,923
555.37	1,107	602	560.47	4,845	12,403
555.47	1,107	613	560.57	4,929	12,892
555.57	1,107	624	560.67	5,013	13,389
555.67	1,107	635	560.77	5,098	13,895
555.77	1,107	646	560.87	5,182	14,409
555.87	1,107	658	560.97	5,266	14,931
555.97	1,107	669	561.07	5,350	15,462
556.07	1,138	751	561.17	5,434	16,001
556.17	1,182	867	561.27	5,518	16,549
556.27	1,227	987	561.37	5,602	17,105
556.37	1,271	1,112	561.47	5,686	17,669
556.47	1,316	1,241	561.57	5,770	18,242
556.57	1,360	1,375	561.67	5,854	18,823
556.67	1,404	1,513	561.77	5,939	19,413
556.77	1,449	1,656	561.87	6,023	20,011
556.87	1,493	1,803	561.97	6,107	20,617
556.97	1,538	1,955	562.07	6,132	20,801
557.07	1,582	2,111	562.17	6,132	20,801
557.17	1,626	2,271	562.27	6,132	20,801
557.27	1,671	2,436	562.37	6,132	20,801
557.37	1,715	2,605	562.47	6,132	20,801
557.47	1,760	2,779	Volume at Lowest Outlet		
557.57	1,804	2,957			
557.67	1,848	3,140			
557.77	1,893	3,327			
557.87	1,937	3,518			
557.97	1,982	3,714			
558.07	2,081	3,917			
558.17	2,204	4,131			
558.27	2,326	4,357			

Stage-Discharge for Pond RG-1:

Elevation (feet)	Primary (cfs)						
553.17	0.00	555.77	0.00	558.37	1.06	560.97	6.49
553.22	0.00	555.82	0.00	558.42	1.10	561.02	6.82
553.27	0.00	555.87	0.00	558.47	1.14	561.07	7.15
553.32	0.00	555.92	0.00	558.52	1.18	561.12	7.48
553.37	0.00	555.97	0.00	558.57	1.22	561.17	7.83
553.42	0.00	556.02	0.00	558.62	1.26	561.22	8.18
553.47	0.00	556.07	0.01	558.67	1.30	561.27	8.54
553.52	0.00	556.12	0.01	558.72	1.34	561.32	8.90
553.57	0.00	556.17	0.02	558.77	1.38	561.37	9.27
553.62	0.00	556.22	0.02	558.82	1.42	561.42	9.65
553.67	0.00	556.27	0.03	558.87	1.45	561.47	10.03
553.72	0.00	556.32	0.03	558.92	1.49	561.52	10.41
553.77	0.00	556.37	0.04	558.97	1.53	561.57	10.75
553.82	0.00	556.42	0.04	559.02	1.56	561.62	11.06
553.87	0.00	556.47	0.05	559.07	1.60	561.67	11.35
553.92	0.00	556.52	0.05	559.12	1.63	561.72	11.63
553.97	0.00	556.57	0.06	559.17	1.66	561.77	11.90
554.02	0.00	556.62	0.06	559.22	1.70	561.82	12.16
554.07	0.00	556.67	0.07	559.27	1.73	561.87	12.41
554.12	0.00	556.72	0.07	559.32	1.77	561.92	12.66
554.17	0.00	556.77	0.08	559.37	1.80	561.97	12.90
554.22	0.00	556.82	0.08	559.42	1.83	562.02	13.13
554.27	0.00	556.87	0.09	559.47	1.86	562.07	13.35
554.32	0.00	556.92	0.09	559.52	1.90	562.12	13.57
554.37	0.00	556.97	0.10	559.57	1.93	562.17	13.78
554.42	0.00	557.02	0.10	559.62	1.96	562.22	13.98
554.47	0.00	557.07	0.11	559.67	1.99	562.27	14.19
554.52	0.00	557.12	0.12	559.72	2.02	562.32	14.38
554.57	0.00	557.17	0.12	559.77	2.05	562.37	14.58
554.62	0.00	557.22	0.13	559.82	2.08	562.42	14.77
554.67	0.00	557.27	0.13	559.87	2.11	562.47	14.96
554.72	0.00	557.32	0.14	559.92	2.14		
554.77	0.00	557.37	0.14	559.97	2.17		
554.82	0.00	557.42	0.15	560.02	2.21		
554.87	0.00	557.47	0.15	560.07	2.30		
554.92	0.00	557.52	0.16	560.12	2.42		
554.97	0.00	557.57	0.18	560.17	2.56		
555.02	0.00	557.62	0.21	560.22	2.72		
555.07	0.00	557.67	0.25	560.27	2.89		
555.12	0.00	557.72	0.31	560.32	3.08		
555.17	0.00	557.77	0.37	560.37	3.28		
555.22	0.00	557.82	0.44	560.42	3.49		
555.27	0.00	557.87	0.51	560.47	3.72		
555.32	0.00	557.92	0.59	560.52	3.95		
555.37	0.00	557.97	0.65	560.57	4.20		
555.42	0.00	558.02	0.70	560.62	4.46		
555.47	0.00	558.07	0.76	560.67	4.72		
555.52	0.00	558.12	0.81	560.72	4.99		
555.57	0.00	558.17	0.87	560.77	5.28		
555.62	0.00	558.22	0.92	560.82	5.57		
555.67	0.00	558.27	0.96	560.87	5.87		
555.72	0.00	558.32	1.01	560.92	6.18		

Discharge at
WQV

FILTRATION PRACTICE DESIGN CRITERIA
(Env-Wq 1508.08)

RG 2

Type/Node Name: _____

Enter the type of filtration practice (e.g., bioretention system) and the node name in the drainage analysis, if applicable.

1.60	ac	Check if you reviewed the restrictions on unlined systems outlined in Env-Wq 1508.08(a). A = Area draining to the practice
0.70	ac	A_I = Impervious area draining to the practice
0.44	decimal	I = Percent impervious area draining to the practice, in decimal form
0.44	unitless	$R_V = 0.05 + (0.9 \times I)$
0.71	ac-in	$WQV = 1" \times R_V \times A$
2,577	cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")
644	cf	25% x WQV (check calc for sediment forebay volume)
1,933	cf	75% x WQV (check calc for surface sand filter volume)
		Method of Pretreatment? (not required for clean or roof runoff)
1,022	cf	V_{SED} = Sediment forebay volume, if used for pretreatment > 25%WQV
Calculate time to drain if system IS NOT underdrained:		
911	sf	A_{SA} = Surface area of the practice
N/A	iph	$K_{sat,DESIGN}$ = Design infiltration rate ¹
If K_{sat} (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?		
Yes	Yes/No	(Use the calculations below)
-	hours	$T_{DRAIN} = V / (A_{SA} * I_{DESIGN})$ ≤ 72-hrs
Calculate time to drain if system IS underdrained:		
559.47	ft	E_{WQV} = Elevation of WQV (attach stage-storage table)
0.14	cfs	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table)
10.23	hours	$T_{DRAIN} = 2WQV/Q_{WQV}$ ≤ 72-hrs
556.25	feet	E_{FC} = Elevation of the bottom of the filter course material ²
555.17	feet	E_{UD} = Invert elevation of the underdrain (UD), if applicable
feet		E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pit)
feet		E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test pit)
1.08	feet	$D_{FC \text{ to } UD}$ = Depth to UD from the bottom of the filter course ≥ 1'
556.25	feet	$D_{FC \text{ to } ROCK}$ = Depth to bedrock from the bottom of the filter course ≥ 1'
556.25	feet	$D_{FC \text{ to } SHWT}$ = Depth to SHWT from the bottom of the filter course ≥ 1'
561.86	ft	Peak elevation of the 50-year storm event (infiltration can be used in analysis)
562.50	ft	Elevation of the top of the practice
YES		50 peak elevation ≤ Elevation of the top of the practice ← yes
If a surface sand filter or underground sand filter is proposed:		
YES	ac	Drainage Area check. < 10 ac
	cf	V = Volume of storage ³ (attach a stage-storage table) ≥ 75%WQV
	inches	D_{FC} = Filter course thickness 18", or 24" if within GPA
Sheet _____		Note what sheet in the plan set contains the filter course specification.
Yes/No		Access grate provided? ← yes

If a bioretention area is proposed:	
YES	ac
1,941	cf
18.0	inches
Sheet	C-605
3.0	:1
Sheet	C-605
If porous pavement is proposed:	
acres	Type of pavement proposed (Concrete? Asphalt? Pavers? Etc.)
:1	Ratio of the contributing area to the pervious surface area
inches	D_{FC} = Filter course thickness
Sheet	Note what sheet in the plan set contains the filter course spec.

1. Rate of the limiting layer (either the filter course or the underlying soil). $K_{sat_{design}}$ includes factor of safety. See Env-Wq 1504.14 for guidance on determining the infiltration rate.
2. See lines 34, 40 and 48 for required depths of filter media.
3. Volume without depending on infiltration. The volume includes the storage above the filter (but below the invert of the outlet structure, if any), the filter media voids, and the pretreatment area. The storage above the filter media shall not include the volume above the outlet structure, if any.

Designer's Notes:

Stage-Area-Storage for Pond RG-2:

Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)
555.17	911	0	560.37	1,927	3,874
555.27	911	36	560.47	1,979	4,069
555.37	911	73	560.57	2,032	4,270
555.47	911	109	560.67	2,084	4,476
555.57	911	146	560.77	2,136	4,687
555.67	911	182	560.87	2,189	4,903
555.77	911	219	561.17	2,241	5,125
555.87	911	255	561.27	2,294	5,351
555.97	911	292	561.37	2,451	5,583
556.07	911	328	561.47	2,503	6,311
556.17	911	364	561.57	2,556	6,564
556.27	911	395	561.67	2,608	6,822
556.37	911	404	561.77	2,660	7,085
556.47	911	414	561.87	2,713	7,354
556.57	911	423	561.97	2,765	7,628
556.67	911	432	562.07	2,781	7,711
556.77	911	441	562.17	2,781	7,711
556.87	911	450	562.27	2,781	7,711
556.97	911	459	562.37	2,781	7,711
557.07	911	468	562.47	2,781	7,711
557.17	911	477	562.57	2,781	7,711
557.27	911	486	562.67	2,781	7,711
557.37	911	496	562.77	2,781	7,711
557.47	911	505	562.87	2,781	7,711
557.57	911	514	562.97	2,781	7,711
557.67	911	523			
557.77	911	532			
557.87	911	541			
557.97	911	550			
558.07	940	618			
558.17	981	714			
558.27	1,022	814			
558.37	1,063	918			
558.47	1,104	1,027			
558.57	1,145	1,139			
558.67	1,186	1,256			
558.77	1,227	1,376			
558.87	1,269	1,501			
558.97	1,310	1,630			
559.07	1,351	1,763			
559.17	1,392	1,900			
559.27	1,433	2,041			
559.37	1,474	2,187			
559.47	1,515	2,336			
559.57	1,556	2,490			
559.67	1,597	2,647			
559.77	1,638	2,809			
559.87	1,680	2,975			
559.97	1,721	3,145			
560.07	1,770	3,320			
560.17	1,822	3,499			
560.27	1,874	3,684			

Volume below Filter
MediaVolume at Lowest
Outlet

R5089-0278_POST

Prepared by Tighe & Bond

HydroCAD® 10.20-4c s/n 01453 © 2024 HydroCAD Software Solutions LLC

Type III 24-hr 50-YR Rainfall=5.94"

Printed 1/29/2026

Stage-Discharge for Pond RG-2:

Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)
555.17	0.00	557.77	0.00	560.37	1.47		
555.22	0.00	557.82	0.00	560.42	1.53		
555.27	0.00	557.87	0.00	560.47	1.59		
555.32	0.00	557.92	0.00	560.52	1.65		
555.37	0.00	557.97	0.00	560.57	1.70		
555.42	0.00	558.02	0.00	560.62	1.76		
555.47	0.00	558.07	0.01	560.67	1.81		
555.52	0.00	558.12	0.01	560.72	1.86		
555.57	0.00	558.17	0.02	560.77	1.91		
555.62	0.00	558.22	0.02	560.82	1.96		
555.67	0.00	558.27	0.03	560.87	2.01		
555.72	0.00	558.32	0.03	560.92	2.05		
555.77	0.00	558.37	0.04	560.97	2.10		
555.82	0.00	558.42	0.04	561.02	2.14		
555.87	0.00	558.47	0.04	561.07	2.19		
555.92	0.00	558.52	0.05	561.12	2.23		
555.97	0.00	558.57	0.05	561.17	2.28		
556.02	0.00	558.62	0.06	561.22	2.32		
556.07	0.00	558.67	0.06	561.27	2.36		
556.12	0.00	558.72	0.07	561.32	2.40		
556.17	0.00	558.77	0.07	561.37	2.44		
556.22	0.00	558.82	0.08	561.42	2.48		
556.27	0.00	558.87	0.08	561.47	2.52		
556.32	0.00	558.92	0.09	561.52	2.57		
556.37	0.00	558.97	0.09	561.57	2.67		
556.42	0.00	559.02	0.10	561.62	2.80		
556.47	0.00	559.07	0.10	561.67	2.95		
556.52	0.00	559.12	0.11	561.72	3.12		
556.57	0.00	559.17	0.11	561.77	3.31		
556.62	0.00	559.22	0.12	561.82	3.51		
556.67	0.00	559.27	0.12	561.87	3.72		
556.72	0.00	559.32	0.13	561.92	3.94		
556.77	0.00	559.37	0.13	561.97	4.18		
556.82	0.00	559.42	0.14	562.02	4.42		
556.87	0.00	559.47	0.14	562.07	4.67		
556.92	0.00	559.52	0.15	562.12	4.93		
556.97	0.00	559.57	0.17	562.17	5.20		
557.02	0.00	559.62	0.20	562.22	5.48		
557.07	0.00	559.67	0.26	562.27	5.77		
557.12	0.00	559.72	0.32	562.32	6.06		
557.17	0.00	559.77	0.40	562.37	6.37		
557.22	0.00	559.82	0.49	562.42	6.68		
557.27	0.00	559.87	0.59	562.47	7.00		
557.32	0.00	559.92	0.69	562.52	7.32		
557.37	0.00	559.97	0.80	562.57	7.65		
557.42	0.00	560.02	0.91	562.62	7.99		
557.47	0.00	560.07	1.02	562.67	8.34		
557.52	0.00	560.12	1.11	562.72	8.70		
557.57	0.00	560.17	1.19	562.77	9.06		
557.62	0.00	560.22	1.26	562.82	9.42		
557.67	0.00	560.27	1.33	562.87	9.80		
557.72	0.00	560.32	1.40	562.92	10.18		

Discharge at
WQV

FILTRATION PRACTICE DESIGN CRITERIA
(Env-Wq 1508.08)

RG 3

Type/Node Name:

Enter the type of filtration practice (e.g., bioretention system) and the node name in the drainage analysis, if applicable.

1.78	ac	Check if you reviewed the restrictions on unlined systems outlined in Env-Wq 1508.08(a). A = Area draining to the practice
0.73	ac	A_I = Impervious area draining to the practice
0.41	decimal	I = Percent impervious area draining to the practice, in decimal form
0.42	unitless	R_V = Runoff coefficient = $0.05 + (0.9 \times I)$
0.75	ac-in	$WQV = 1" \times R_V \times A$
2,709	cf	WQV conversion (ac-in $\times 43,560$ sf/ac $\times 1\text{ft}/12"$)
677	cf	25% \times WQV (check calc for sediment forebay volume)
2,032	cf	75% \times WQV (check calc for surface sand filter volume)
		Method of Pretreatment? (not required for clean or roof runoff)
N/A	cf	V_{SED} = Sediment forebay volume, if used for pretreatment
		$\geq 25\%WQV$
Calculate time to drain if system IS NOT underdrained:		
3,048	sf	A_{SA} = Surface area of the practice
N/A	iph	$K_{sat,DESIGN}$ = Design infiltration rate ¹
If K_{sat} (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?		
Yes	Yes/No	(Use the calculations below)
-	hours	$T_{DRAIN} = V / (A_{SA} * I_{DESIGN})$
		$\leq 72\text{-hrs}$
Calculate time to drain if system IS underdrained:		
573.77	ft	E_{WQV} = Elevation of WQV (attach stage-storage table)
0.21	cfs	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table)
7.17	hours	$T_{DRAIN} = 2WQV/Q_{WQV}$
		$\leq 72\text{-hrs}$
571.25	feet	E_{FC} = Elevation of the bottom of the filter course material ²
570.17	feet	E_{UD} = Invert elevation of the underdrain (UD), if applicable
feet		E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pit)
feet		E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test pit)
1.08	feet	$D_{FC \text{ to } UD}$ = Depth to UD from the bottom of the filter course
571.25	feet	$D_{FC \text{ to } ROCK}$ = Depth to bedrock from the bottom of the filter course
571.25	feet	$D_{FC \text{ to } SHWT}$ = Depth to SHWT from the bottom of the filter course
574.99	ft	Peak elevation of the 50-year storm event (infiltration can be used in analysis)
576.00	ft	Elevation of the top of the practice
YES		50 peak elevation \leq Elevation of the top of the practice
		\leftarrow yes
If a surface sand filter or underground sand filter is proposed:		
YES	ac	Drainage Area check.
	cf	V = Volume of storage ³ (attach a stage-storage table)
	inches	D_{FC} = Filter course thickness
Sheet		Note what sheet in the plan set contains the filter course specification.
Yes/No		Access grate provided?
		\leftarrow yes

If a bioretention area is proposed:	
YES	ac
3,277	cf
18.0	inches
Sheet	C-606
3.0	:1
Sheet	C-605
If porous pavement is proposed:	
acres	Type of pavement proposed (Concrete? Asphalt? Pavers? Etc.)
:1	Ratio of the contributing area to the pervious surface area
inches	D_{FC} = Filter course thickness
Sheet	Note what sheet in the plan set contains the filter course spec.

1. Rate of the limiting layer (either the filter course or the underlying soil). $K_{sat_{design}}$ includes factor of safety. See Env-Wq 1504.14 for guidance on determining the infiltration rate.
2. See lines 34, 40 and 48 for required depths of filter media.
3. Volume without depending on infiltration. The volume includes the storage above the filter (but below the invert of the outlet structure, if any), the filter media voids, and the pretreatment area. The storage above the filter media shall not include the volume above the outlet structure, if any.

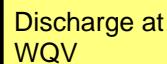
Designer's Notes:

Stage-Area-Storage for Pond RG-3:

Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)
570.17	3,048	0	575.37	6,526	11,045
570.27	3,048	122	575.47	6,526	11,045
570.37	3,048	244	575.57	6,526	11,045
570.47	3,048	366	575.67	6,526	11,045
570.57	3,048	488	575.77	6,526	11,045
570.67	3,048	610	575.87	6,526	11,045
570.77	3,048	732	575.97	6,526	11,045
570.87	3,048	853	Volume below Filter Media		
570.97	3,048	975	26		
571.07	3,048	1,097	26		
571.17	3,048	1,219	26		
571.27	3,048	1,323	576.37	6,526	11,045
571.37	3,048	1,353	576.47	6,526	11,045
571.47	3,048	1,384			
571.57	3,048	1,414			
571.67	3,048	1,445			
571.77	3,048	1,475			
571.87	3,048	1,506			
571.97	3,048	1,536			
572.07	3,048	1,567			
572.17	3,048	1,597			
572.27	3,048	1,628			
572.37	3,048	1,658			
572.47	3,048	1,689			
572.57	3,048	1,719			
572.67	3,048	1,750			
572.77	3,048	1,780			
572.87	3,048	1,811			
572.97	3,048	1,841			
573.07	3,143	2,067			
573.17	3,279	2,388			
573.27	3,415	2,723			
573.37	3,551	3,071			
573.47	3,687	3,433			
573.57	3,823	3,808			
573.67	3,959	4,198			
573.77	4,095	4,600	Volume at Lowest Outlet		
573.87	4,231	5,017			
573.97	4,367	5,447			
574.07	4,556	5,892			
574.17	4,768	6,358			
574.27	4,980	6,845			
574.37	5,192	7,354			
574.47	5,403	7,884			
574.57	5,615	8,435			
574.67	5,827	9,007			
574.77	6,039	9,600			
574.87	6,251	10,215			
574.97	6,462	10,850			
575.07	6,526	11,045			
575.17	6,526	11,045			
575.27	6,526	11,045			

R5089-0278_POST

Prepared by Tighe & Bond


HydroCAD® 10.20-4c s/n 01453 © 2024 HydroCAD Software Solutions LLC

Type III 24-hr 50-YR Rainfall=5.94"

Printed 1/29/2026

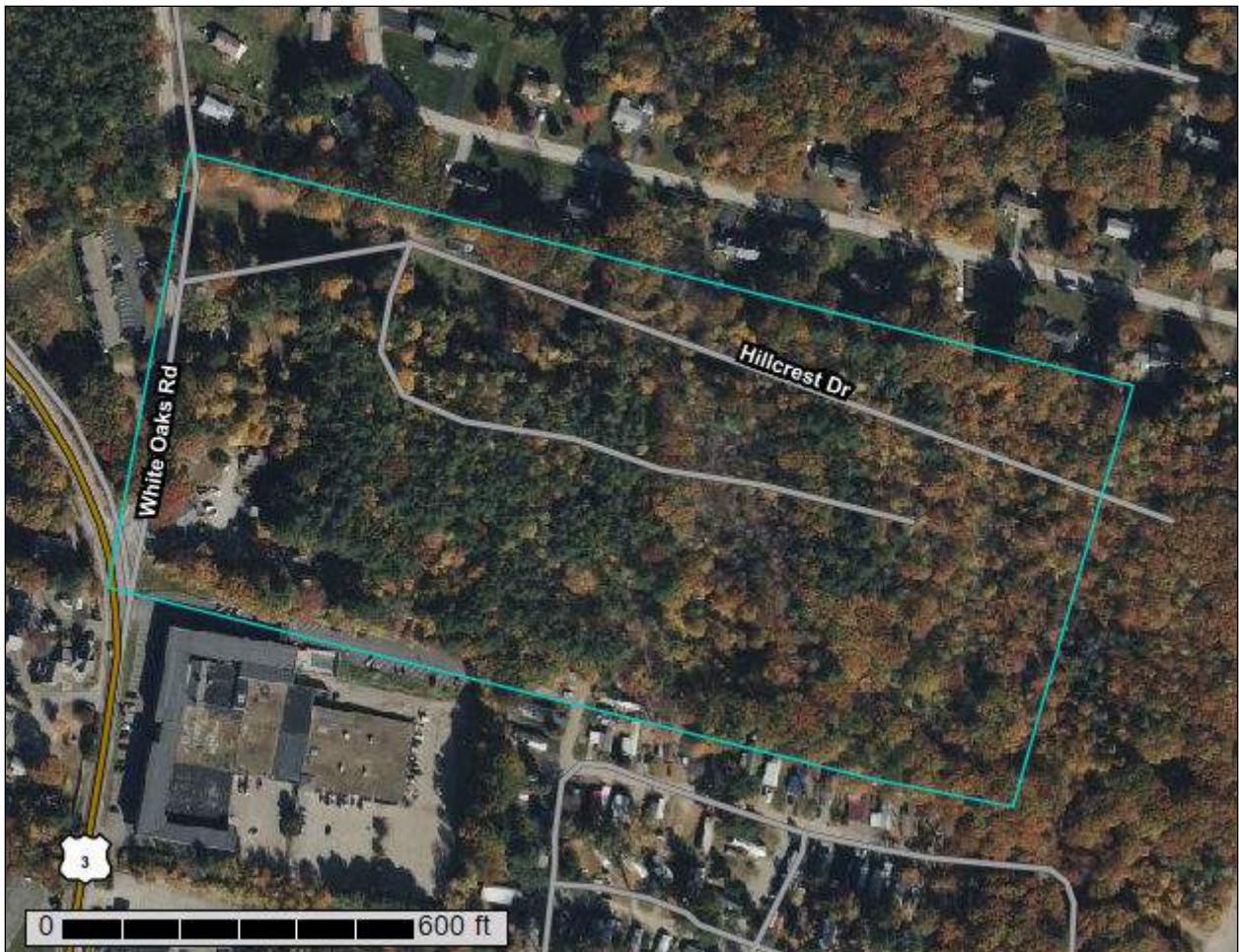
Stage-Discharge for Pond RG-3:

Elevation (feet)	Discharge (cfs)	Primary (cfs)	Secondary (cfs)	Elevation (feet)	Discharge (cfs)	Primary (cfs)	Secondary (cfs)
570.17	0.00	0.00	0.00	575.37	1.95	1.95	0.00
570.27	0.00	0.00	0.00	575.47	1.96	1.96	0.00
570.37	0.00	0.00	0.00	575.57	1.98	1.98	0.00
570.47	0.00	0.00	0.00	575.67	2.00	2.00	0.00
570.57	0.00	0.00	0.00	575.77	2.02	2.02	0.00
570.67	0.00	0.00	0.00	575.87	2.03	2.03	0.00
570.77	0.00	0.00	0.00	575.97	2.05	2.05	0.00
570.87	0.00	0.00	0.00	576.07	2.32	2.07	0.25
570.97	0.00	0.00	0.00	576.17	3.10	2.09	1.01
571.07	0.00	0.00	0.00	576.27	4.24	2.10	2.14
571.17	0.00	0.00	0.00	576.37	5.72	2.12	3.60
571.27	0.00	0.00	0.00	576.47	7.55	2.14	5.41
571.37	0.00	0.00	0.00				
571.47	0.00	0.00	0.00				
571.57	0.00	0.00	0.00				
571.67	0.00	0.00	0.00				
571.77	0.00	0.00	0.00				
571.87	0.00	0.00	0.00				
571.97	0.00	0.00	0.00				
572.07	0.00	0.00	0.00				
572.17	0.00	0.00	0.00				
572.27	0.00	0.00	0.00				
572.37	0.00	0.00	0.00				
572.47	0.00	0.00	0.00				
572.57	0.00	0.00	0.00				
572.67	0.00	0.00	0.00				
572.77	0.00	0.00	0.00				
572.87	0.00	0.00	0.00				
572.97	0.00	0.00	0.00				
573.07	0.02	0.02	0.00				
573.17	0.05	0.05	0.00				
573.27	0.08	0.08	0.00				
573.37	0.12	0.12	0.00				
573.47	0.15	0.15	0.00				
573.57	0.18	0.18	0.00				
573.67	0.21	0.21	0.00				
573.77	1.42	1.42	0.00				
573.87	1.65	1.65	0.00				
573.97	1.67	1.67	0.00				
574.07	1.69	1.69	0.00				
574.17	1.71	1.71	0.00				
574.27	1.73	1.73	0.00				
574.37	1.76	1.76	0.00				
574.47	1.78	1.78	0.00				
574.57	1.79	1.79	0.00				
574.67	1.81	1.81	0.00				
574.77	1.83	1.83	0.00				
574.87	1.85	1.85	0.00				
574.97	1.87	1.87	0.00				
575.07	1.89	1.89	0.00				
575.17	1.91	1.91	0.00				
575.27	1.93	1.93	0.00				

Discharge at
WQV

Tighe & Bond

Appendix A:
NRCS Web Soil Survey


United States
Department of
Agriculture

Natural
Resources
Conservation
Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Merrimack and Belknap Counties, New Hampshire

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (<http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/>) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (<https://offices.sc.egov.usda.gov/locator/app?agency=nrcs>) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface.....	2
How Soil Surveys Are Made.....	5
Soil Map.....	8
Soil Map.....	9
Legend.....	10
Map Unit Legend.....	12
Map Unit Descriptions.....	12
Merrimack and Belknap Counties, New Hampshire.....	14
166B—Canterbury fine sandy loam, 3 to 8 percent slopes.....	14
167C—Canterbury fine sandy loam, 8 to 15 percent slopes, very stony....	15
167D—Canterbury fine sandy loam, 15 to 25 percent slopes, very stony..	17
479B—Gilmanton fine sandy loam, 3 to 8 percent slopes, very stony.....	19
680C—Henniker-Urban land complex, 0 to 15 percent slopes.....	21
789B—Champlain-Urban land complex, 0 to 8 percent slopes.....	23
References.....	25

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units).

Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

Custom Soil Resource Report

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Custom Soil Resource Report
Soil Map

MAP LEGEND

Area of Interest (AOI)		
	Area of Interest (AOI)	
Soils		
	Soil Map Unit Polygons	
	Soil Map Unit Lines	
	Soil Map Unit Points	
Special Point Features		
	Blowout	
	Borrow Pit	
	Clay Spot	
	Closed Depression	
	Gravel Pit	
	Gravelly Spot	
	Landfill	
	Lava Flow	
	Marsh or swamp	
	Mine or Quarry	
	Miscellaneous Water	
	Perennial Water	
	Rock Outcrop	
	Saline Spot	
	Sandy Spot	
	Severely Eroded Spot	
	Sinkhole	
	Slide or Slip	
	Sodic Spot	
	Spoil Area	
		Stony Spot
		Very Stony Spot
		Wet Spot
		Other
		Special Line Features
Water Features		
		Streams and Canals
Transportation		
		Rails
		Interstate Highways
		US Routes
		Major Roads
		Local Roads
Background		
		Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service
 Web Soil Survey URL:
 Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Merrimack and Belknap Counties, New Hampshire
 Survey Area Data: Version 31, Sep 10, 2025

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Oct 6, 2022—Oct 22, 2022

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background

MAP LEGEND

MAP INFORMATION

imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
166B	Canterbury fine sandy loam, 3 to 8 percent slopes	6.2	21.9%
167C	Canterbury fine sandy loam, 8 to 15 percent slopes, very stony	8.3	29.3%
167D	Canterbury fine sandy loam, 15 to 25 percent slopes, very stony	8.2	28.8%
479B	Gilmanton fine sandy loam, 3 to 8 percent slopes, very stony	4.1	14.4%
680C	Henniker-Urban land complex, 0 to 15 percent slopes	0.9	3.2%
789B	Champlain-Urban land complex, 0 to 8 percent slopes	0.7	2.4%
Totals for Area of Interest		28.3	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit

descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Merrimack and Belknap Counties, New Hampshire

166B—Canterbury fine sandy loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 9dnr

Elevation: 250 to 2,940 feet

Mean annual precipitation: 40 to 50 inches

Mean annual air temperature: 37 to 46 degrees F

Frost-free period: 90 to 135 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Canterbury and similar soils: 80 percent

Minor components: 20 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Canterbury

Setting

Landform: Drumlins

Down-slope shape: Linear

Across-slope shape: Linear

Parent material: Lodgement till derived from granite, gneiss, or schist

Typical profile

Oe - 0 to 2 inches: slightly decomposed plant material

H1 - 2 to 6 inches: fine sandy loam

H2 - 6 to 28 inches: fine sandy loam

H3 - 28 to 65 inches: fine sandy loam

Properties and qualities

Slope: 3 to 8 percent

Depth to restrictive feature: 20 to 39 inches to densic material

Drainage class: Well drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.60 in/hr)

Depth to water table: About 24 to 42 inches

Frequency of flooding: None

Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 4.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: C

Ecological site: F144BY501ME - Loamy Slope (Northern Hardwoods),
F144BY601ME - Dry Sand

Hydric soil rating: No

Minor Components

Gilmanton

Percent of map unit: 5 percent

Landform: Hillslopes

Down-slope shape: Linear

Across-slope shape: Linear

Hydric soil rating: No

Henniker

Percent of map unit: 5 percent

Landform: Hills

Down-slope shape: Linear

Across-slope shape: Linear

Hydric soil rating: No

Metacomet

Percent of map unit: 3 percent

Landform: Hillslopes

Down-slope shape: Linear

Across-slope shape: Linear

Hydric soil rating: No

Pillsbury

Percent of map unit: 3 percent

Landform: Ground moraines

Down-slope shape: Linear

Across-slope shape: Convex

Hydric soil rating: Yes

Marlow

Percent of map unit: 2 percent

Landform: Drumlins

Down-slope shape: Linear

Across-slope shape: Linear

Hydric soil rating: No

Pillsbury

Percent of map unit: 2 percent

Landform: Ground moraines

Down-slope shape: Linear

Across-slope shape: Convex

Hydric soil rating: Yes

167C—Canterbury fine sandy loam, 8 to 15 percent slopes, very stony

Map Unit Setting

National map unit symbol: 9dnv

Elevation: 250 to 2,940 feet

Mean annual precipitation: 40 to 50 inches

Mean annual air temperature: 37 to 46 degrees F

Frost-free period: 90 to 135 days

Farmland classification: Farmland of local importance

Map Unit Composition

Canterbury and similar soils: 75 percent

*Minor components: 25 percent
Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Canterbury

Setting

Landform: Drumlins

Down-slope shape: Linear

Across-slope shape: Linear

Parent material: Lodgement till derived from granite, gneiss, or schist

Typical profile

Oe - 0 to 2 inches: slightly decomposed plant material

H1 - 2 to 6 inches: fine sandy loam

H2 - 6 to 28 inches: fine sandy loam

H3 - 28 to 65 inches: fine sandy loam

Properties and qualities

Slope: 8 to 15 percent

Surface area covered with cobbles, stones or boulders: 1.6 percent

Depth to restrictive feature: 20 to 39 inches to densic material

Drainage class: Well drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.60 in/hr)

Depth to water table: About 24 to 42 inches

Frequency of flooding: None

Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 4.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6s

Hydrologic Soil Group: C

Ecological site: F144BY501ME - Loamy Slope (Northern Hardwoods),

F144BY601ME - Dry Sand

Hydric soil rating: No

Minor Components

Gilmanton

Percent of map unit: 5 percent

Landform: Hillslopes

Down-slope shape: Linear

Across-slope shape: Linear

Hydric soil rating: No

Henniker

Percent of map unit: 5 percent

Landform: Hills

Down-slope shape: Linear

Across-slope shape: Linear

Hydric soil rating: No

Chichester

Percent of map unit: 5 percent

Landform: Hillslopes

Down-slope shape: Linear

Across-slope shape: Linear

Hydric soil rating: No

Marlow

Percent of map unit: 5 percent

Landform: Drumlins

Down-slope shape: Linear

Across-slope shape: Linear

Hydric soil rating: No

Metacomet

Percent of map unit: 3 percent

Landform: Hillslopes

Down-slope shape: Linear

Across-slope shape: Linear

Hydric soil rating: No

Metacomet

Percent of map unit: 2 percent

Landform: Hillslopes

Down-slope shape: Linear

Across-slope shape: Linear

Hydric soil rating: No

167D—Canterbury fine sandy loam, 15 to 25 percent slopes, very stony

Map Unit Setting

National map unit symbol: 9dnt

Elevation: 250 to 2,940 feet

Mean annual precipitation: 40 to 50 inches

Mean annual air temperature: 37 to 46 degrees F

Frost-free period: 90 to 135 days

Farmland classification: Farmland of local importance

Map Unit Composition

Canterbury and similar soils: 75 percent

Minor components: 25 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Canterbury

Setting

Landform: Drumlins

Down-slope shape: Linear

Across-slope shape: Linear

Parent material: Lodgement till derived from granite, gneiss, or schist

Typical profile

Oe - 0 to 2 inches: slightly decomposed plant material

H1 - 2 to 6 inches: fine sandy loam

H2 - 6 to 28 inches: fine sandy loam

H3 - 28 to 65 inches: fine sandy loam

Properties and qualities

Slope: 15 to 25 percent

Surface area covered with cobbles, stones or boulders: 1.6 percent

Depth to restrictive feature: 20 to 39 inches to densic material

Drainage class: Well drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.60 in/hr)

Depth to water table: About 24 to 42 inches

Frequency of flooding: None

Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 4.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6s

Hydrologic Soil Group: C

*Ecological site: F144BY501ME - Loamy Slope (Northern Hardwoods),
F144BY601ME - Dry Sand*

Hydric soil rating: No

Minor Components

Gilmanton

Percent of map unit: 5 percent

Landform: Hillslopes

Down-slope shape: Linear

Across-slope shape: Linear

Hydric soil rating: No

Henniker

Percent of map unit: 5 percent

Landform: Hills

Down-slope shape: Linear

Across-slope shape: Linear

Hydric soil rating: No

Marlow

Percent of map unit: 5 percent

Landform: Drumlins

Down-slope shape: Linear

Across-slope shape: Linear

Hydric soil rating: No

Metacomet

Percent of map unit: 4 percent

Landform: Hillslopes

Down-slope shape: Linear

Across-slope shape: Linear

Hydric soil rating: No

Chichester

Percent of map unit: 3 percent

Landform: Hillslopes

Down-slope shape: Linear

Across-slope shape: Linear

Hydric soil rating: No

Millsite

Percent of map unit: 3 percent

Landform: Hillslopes

Down-slope shape: Linear

Across-slope shape: Linear

Hydric soil rating: No

479B—Gilmanton fine sandy loam, 3 to 8 percent slopes, very stony

Map Unit Setting

National map unit symbol: bpmj

Elevation: 250 to 2,940 feet

Mean annual precipitation: 40 to 50 inches

Mean annual air temperature: 37 to 46 degrees F

Frost-free period: 90 to 135 days

Farmland classification: Farmland of local importance

Map Unit Composition

Gilmanton and similar soils: 75 percent

Minor components: 25 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Gilmanton

Setting

Landform: Hillslopes

Down-slope shape: Linear

Across-slope shape: Linear

Parent material: Lodgement till derived from granite, gneiss, or schist; lodgement till derived from granite, gneiss, or schist

Typical profile

Oi - 0 to 2 inches: slightly decomposed plant material

Oa - 2 to 3 inches: slightly decomposed plant material

H1 - 3 to 8 inches: fine sandy loam

H2 - 8 to 24 inches: fine sandy loam

H3 - 24 to 65 inches: fine sandy loam

Properties and qualities

Slope: 3 to 8 percent

Surface area covered with cobbles, stones or boulders: 1.6 percent

Depth to restrictive feature: 20 to 39 inches to densic material

Drainage class: Moderately well drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.60 in/hr)

Depth to water table: About 16 to 30 inches

Frequency of flooding: None

Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 5.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6s

Hydrologic Soil Group: C/D

Ecological site: F144BY501ME - Loamy Slope (Northern Hardwoods),

F144BY602ME - Sandy Toeslope

Hydric soil rating: No

Minor Components

Pillsbury

Percent of map unit: 10 percent

Landform: Ground moraines

Down-slope shape: Linear

Across-slope shape: Convex

Hydric soil rating: Yes

Canterbury

Percent of map unit: 5 percent

Landform: Drumlins

Down-slope shape: Linear

Across-slope shape: Linear

Hydric soil rating: No

Metacomet

Percent of map unit: 4 percent

Landform: Hillslopes

Down-slope shape: Linear

Across-slope shape: Linear

Hydric soil rating: No

Peacham

Percent of map unit: 2 percent

Landform: Depressions

Down-slope shape: Concave

Across-slope shape: Concave

Hydric soil rating: Yes

Henniker

Percent of map unit: 2 percent

Landform: Hills

Down-slope shape: Linear

Across-slope shape: Linear

Hydric soil rating: No

Peru

Percent of map unit: 2 percent

Landform: Hillslopes

Down-slope shape: Linear

Across-slope shape: Linear

Hydric soil rating: No

680C—Henniker-Urban land complex, 0 to 15 percent slopes

Map Unit Setting

National map unit symbol: 9dql
Elevation: 200 to 2,940 feet
Mean annual precipitation: 40 to 50 inches
Mean annual air temperature: 37 to 46 degrees F
Frost-free period: 90 to 135 days
Farmland classification: Not prime farmland

Map Unit Composition

Henniker and similar soils: 41 percent
Urban land: 39 percent
Minor components: 20 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Henniker

Setting

Landform: Hills
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Basal melt-out till derived from granite, gneiss, or schist

Typical profile

Oi - 0 to 1 inches: slightly decomposed plant material
H1 - 1 to 4 inches: fine sandy loam
H2 - 4 to 34 inches: fine sandy loam
H3 - 34 to 65 inches: fine sandy loam

Properties and qualities

Slope: 0 to 15 percent
Depth to restrictive feature: 20 to 39 inches to densic material
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.60 in/hr)
Depth to water table: About 18 to 38 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 4.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 3e
Hydrologic Soil Group: C
Ecological site: F144BY501ME - Loamy Slope (Northern Hardwoods)
Hydric soil rating: No

Description of Urban Land

Typical profile

H1 - 0 to 6 inches: variable

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 8s

Hydric soil rating: Unranked

Minor Components

Becket

Percent of map unit: 5 percent

Landform: Hills

Down-slope shape: Linear

Across-slope shape: Linear

Hydric soil rating: No

Canterbury

Percent of map unit: 5 percent

Landform: Drumlins

Down-slope shape: Linear

Across-slope shape: Linear

Hydric soil rating: No

Metacomet

Percent of map unit: 4 percent

Landform: Hillslopes

Down-slope shape: Linear

Across-slope shape: Linear

Hydric soil rating: No

Moosilauke

Percent of map unit: 4 percent

Landform: Ground moraines

Down-slope shape: Linear

Across-slope shape: Convex

Hydric soil rating: Yes

Chichester

Percent of map unit: 2 percent

Landform: Hillslopes

Down-slope shape: Linear

Across-slope shape: Linear

Hydric soil rating: No

789B—Champlain-Urban land complex, 0 to 8 percent slopes

Map Unit Setting

National map unit symbol: 1hb2y
Elevation: 200 to 2,940 feet
Mean annual precipitation: 40 to 50 inches
Mean annual air temperature: 37 to 46 degrees F
Frost-free period: 80 to 160 days
Farmland classification: Not prime farmland

Map Unit Composition

Champlain and similar soils: 41 percent
Urban land: 39 percent
Minor components: 20 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Champlain

Setting

Landform: Terraces
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Sandy outwash derived mainly from granite, gneiss and schist

Typical profile

Oi - 0 to 1 inches: slightly decomposed plant material
H1 - 1 to 6 inches: loamy fine sand
H2 - 6 to 22 inches: loamy fine sand
H3 - 22 to 65 inches: loamy fine sand

Properties and qualities

Slope: 0 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat excessively drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 3.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 3s
Hydrologic Soil Group: A
Ecological site: F144BY601ME - Dry Sand
Hydric soil rating: No

Description of Urban Land

Typical profile

H1 - 0 to 6 inches: variable

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 8s

Hydric soil rating: Unranked

Minor Components

Croghan

Percent of map unit: 5 percent

Landform: Terraces

Down-slope shape: Linear

Across-slope shape: Linear

Hydric soil rating: No

Naumburg

Percent of map unit: 5 percent

Landform: Depressions

Down-slope shape: Linear

Across-slope shape: Convex

Hydric soil rating: Yes

Ondawa

Percent of map unit: 3 percent

Landform: Flood plains

Hydric soil rating: No

Adams

Percent of map unit: 3 percent

Landform: Outwash terraces

Down-slope shape: Linear

Across-slope shape: Linear

Hydric soil rating: No

Rumney

Percent of map unit: 2 percent

Landform: Flood plains

Down-slope shape: Linear

Across-slope shape: Convex

Hydric soil rating: Yes

Colton

Percent of map unit: 2 percent

Landform: Terraces

Down-slope shape: Linear

Across-slope shape: Linear

Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2_053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. <http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084>

Custom Soil Resource Report

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

Tighe & Bond

Appendix B:
NRCC Rainfall Data

Extreme Precipitation Tables

Northeast Regional Climate Center

Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

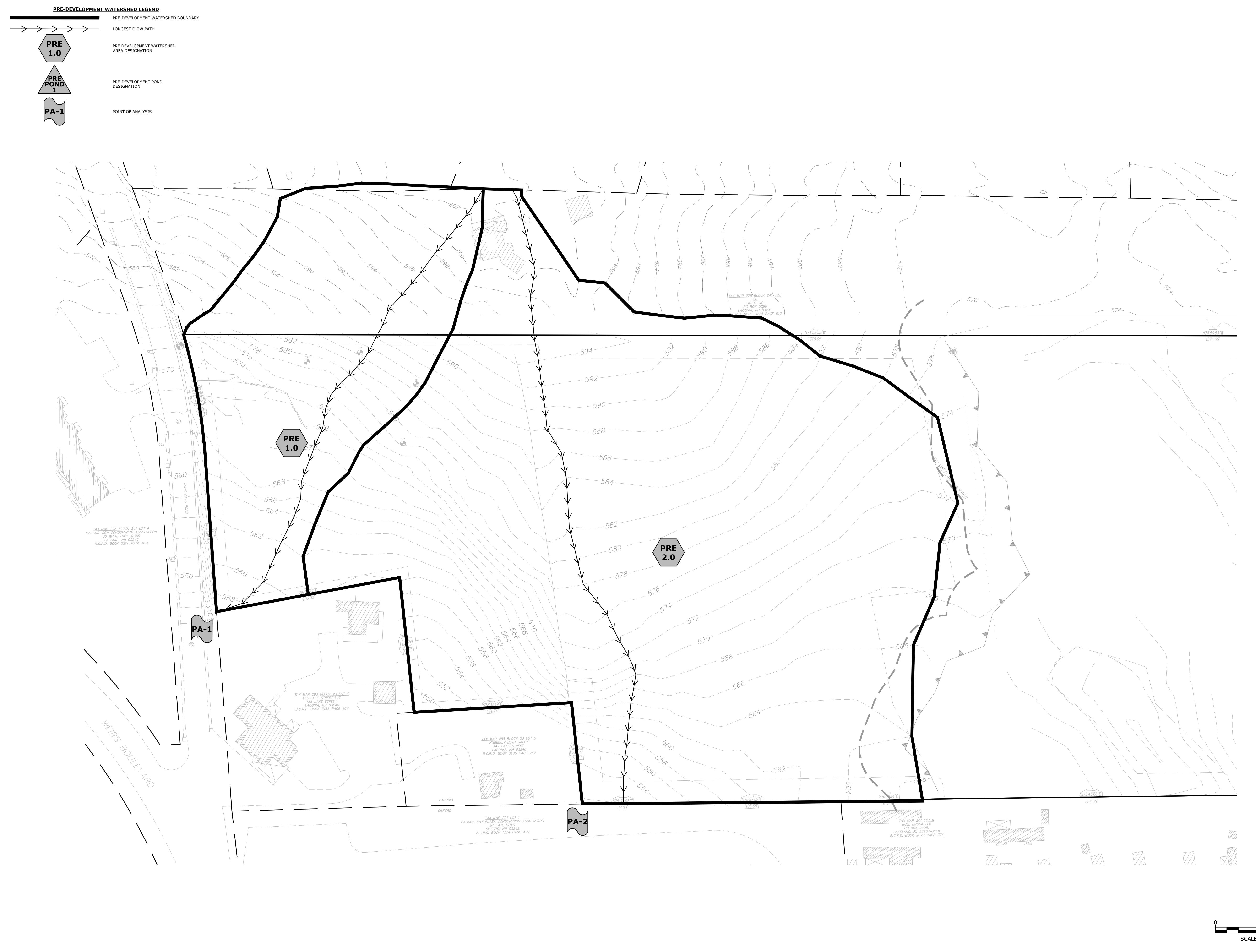
Metadata for Point																		
Smoothing	Yes																	
State																		
Location																		
Latitude	43.569 degrees North																	
Longitude	71.447 degrees West																	
Elevation	170 feet																	
Date/Time	Tue Dec 16 2025 09:52:32 GMT-0500 (Eastern Standard Time)																	

Extreme Precipitation Estimates

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.26	0.39	0.49	0.64	0.80	1.01	1yr	0.69	0.95	1.16	1.46	1.83	2.31	2.59	1yr	2.05	2.49	2.90	3.54	4.12	1yr
2yr	0.31	0.48	0.60	0.79	0.99	1.25	2yr	0.86	1.14	1.44	1.79	2.22	2.75	3.10	2yr	2.44	2.98	3.45	4.16	4.75	2yr
5yr	0.37	0.58	0.72	0.97	1.23	1.56	5yr	1.07	1.43	1.81	2.25	2.78	3.42	3.89	5yr	3.03	3.74	4.32	5.11	5.80	5yr
10yr	0.41	0.65	0.82	1.12	1.46	1.86	10yr	1.26	1.71	2.16	2.68	3.30	4.04	4.62	10yr	3.57	4.45	5.12	5.97	6.75	10yr
25yr	0.49	0.78	0.99	1.37	1.82	2.34	25yr	1.57	2.15	2.71	3.37	4.14	5.03	5.81	25yr	4.45	5.59	6.42	7.34	8.25	25yr
50yr	0.56	0.89	1.14	1.60	2.15	2.78	50yr	1.86	2.57	3.24	4.02	4.91	5.94	6.92	50yr	5.25	6.65	7.63	8.58	9.61	50yr
100yr	0.63	1.02	1.32	1.87	2.55	3.32	100yr	2.20	3.07	3.87	4.79	5.83	7.02	8.23	100yr	6.21	7.92	9.06	10.04	11.20	100yr
200yr	0.72	1.18	1.53	2.19	3.02	3.94	200yr	2.60	3.67	4.60	5.70	6.93	8.29	9.81	200yr	7.34	9.43	10.77	11.75	13.06	200yr
500yr	0.87	1.42	1.86	2.70	3.78	4.97	500yr	3.26	4.65	5.80	7.18	8.69	10.36	12.37	500yr	9.17	11.89	13.54	14.48	16.01	500yr

Lower Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.23	0.35	0.43	0.58	0.71	0.90	1yr	0.61	0.88	0.97	1.27	1.53	1.97	2.26	1yr	1.74	2.17	2.36	2.91	3.67	1yr
2yr	0.30	0.47	0.57	0.78	0.96	1.14	2yr	0.83	1.12	1.30	1.72	2.21	2.67	3.00	2yr	2.37	2.89	3.35	4.04	4.61	2yr
5yr	0.34	0.53	0.66	0.90	1.15	1.37	5yr	0.99	1.34	1.55	2.02	2.61	3.15	3.59	5yr	2.79	3.46	3.97	4.78	5.42	5yr
10yr	0.38	0.58	0.72	1.01	1.30	1.55	10yr	1.12	1.52	1.77	2.26	2.92	3.57	4.10	10yr	3.16	3.94	4.52	5.41	6.11	10yr
25yr	0.43	0.66	0.82	1.16	1.53	1.85	25yr	1.32	1.81	2.10	2.65	3.37	4.20	4.86	25yr	3.71	4.67	5.35	6.30	7.11	25yr
50yr	0.47	0.72	0.90	1.29	1.74	2.10	50yr	1.50	2.06	2.39	2.98	3.74	4.72	5.53	50yr	4.18	5.32	6.07	7.10	8.02	50yr
100yr	0.52	0.79	0.99	1.43	1.97	2.39	100yr	1.70	2.33	2.74	3.48	4.16	5.30	6.28	100yr	4.69	6.04	6.87	8.01	8.99	100yr
200yr	0.58	0.87	1.10	1.60	2.23	2.71	200yr	1.93	2.65	3.13	3.96	4.59	5.93	7.11	200yr	5.25	6.84	7.76	8.99	10.11	200yr
500yr	0.67	0.99	1.27	1.85	2.63	3.20	500yr	2.27	3.13	3.75	4.70	5.23	6.82	8.33	500yr	6.04	8.01	9.10	10.50	11.80	500yr


Upper Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.28	0.43	0.53	0.71	0.87	1.04	1yr	0.75	1.02	1.19	1.57	1.98	2.53	2.83	1yr	2.24	2.72	3.17	3.79	4.42	1yr
2yr	0.33	0.50	0.62	0.84	1.03	1.22	2yr	0.89	1.19	1.39	1.83	2.42	2.86	3.23	2yr	2.54	3.10	3.58	4.30	4.89	2yr
5yr	0.40	0.61	0.76	1.04	1.32	1.59	5yr	1.14	1.55	1.80	2.35	2.99	3.72	4.20	5yr	3.29	4.04	4.64	5.47	6.19	5yr
10yr	0.47	0.73	0.90	1.26	1.63	1.95	10yr	1.40	1.91	2.21	2.80	3.55	4.55	5.15	10yr	4.03	4.95	5.68	6.59	7.42	10yr
25yr	0.60	0.91	1.14	1.62	2.14	2.58	25yr	1.84	2.52	2.90	3.63	4.55	5.98	6.77	25yr	5.29	6.51	7.43	8.56	9.44	25yr
50yr	0.72	1.09	1.36	1.95	2.63	3.19	50yr	2.27	3.12	3.56	4.38	5.51	7.37	8.35	50yr	6.52	8.03	9.11	10.38	11.44	50yr
100yr	0.87	1.31	1.64	2.37	3.25	3.96	100yr	2.80	3.87	4.38	5.56	6.66	9.10	10.28	100yr	8.05	9.88	11.19	12.59	13.75	100yr
200yr	1.04	1.57	1.99	2.88	4.01	4.92	200yr	3.46	4.81	5.38	6.77	8.81	11.26	12.71	200yr	9.96	12.22	13.75	15.29	16.56	200yr
500yr	1.33	1.98	2.55	3.70	5.26	6.60	500yr	4.54	6.45	7.07	8.78	11.53	14.96	16.87	500yr	13.24	16.22	18.13	19.81	21.21	500yr

Tighe & Bond

Appendix C:
Full-Size Watershed Plans

33 WHITE OAKS SUBDIVISION

33 White Oaks Road

Laconia, New Hampshire

1 1/30/2026 TRC Submission

MARK DATE DESCRIPTION

PROJECT NO: R5089-027B

DATE: 01/30/2026

FILE: R5089-0278-C-HYDRO.dwg

DRAWN BY: M.CURLEY/C.KRZCUIK

DESIGNED BY: C.KRZCUIK

CHECKED BY: N.HANSEN

APPROVED BY: P.CRIMMINS

POST-DEVELOPMENT WATERSHED PLAN

SCALE: AS SHOWN

0 50' 100'

SCALE: 1" = 50'

C-803

R5089-0278
January 30, 2026

Mr. Rob Mora
Director of Planning Department
City of Laconia Planning Department
45 Beacon Street E
Laconia, NH 03246

**Re: Trip Generation Analysis
33 White Oaks Subdivision - 33 White Oaks Road, Laconia, NH**

Dear Rob:

Tighe & Bond has performed a trip generation analysis related to the proposed White Oaks Rise Subdivision located at 33 White Oaks Road in Laconia, New Hampshire. The project consists of a 25-lot subdivision, including 24 single-family residential building lots and one lot dedicated to drainage improvements.

The project site is located in an area characterized by single-family residential development. The surrounding roadway network includes White Oaks Road, a local residential roadway providing one lane of travel in each direction with a posted speed limit of 35 miles per hour. There are no existing sidewalks or pedestrian facilities in the vicinity of the project site, and sidewalks are not proposed as part of this subdivision, consistent with existing roadway conditions and development patterns in the area. No signalized intersections are located immediately adjacent to the site.

Vehicular access to the proposed subdivision will be provided via a new public roadway constructed within a dedicated public right-of-way, as shown on the proposed site plan. The new public street will intersect White Oaks Road and provide access to all proposed residential lots within the subdivision.

Based on the posted speed limit of 35 mph on White Oaks Road, a minimum stopping sight distance of 250 feet is required in accordance with the American Association of State Highway and Transportation Officials (AASHTO) Policy on Geometric Design of Highways and Streets. Adequate stopping sight distance will be provided at the proposed roadway intersection to meet or exceed this requirement.

This analysis was performed utilizing the Institute of Transportation Engineers (ITE) Trip Generation Manual, latest edition. For the purposes of analysis, trip generation was calculated using ITE Land Use Code 210 - Single-Family Detached Housing. Average weekday AM and PM peak hour trip generation rates were used to estimate the number of vehicle trips anticipated to be generated by the proposed development.

Proposed 24 Residential Units - LUC 210

Weekday AM Peak Hour

Trips Entering	6
Trips Exiting	16
Total Vehicle Trips	22

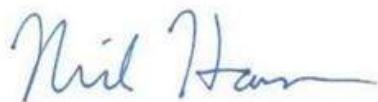
Weekday PM Peak Hour

Trips Entering	16
Trips Exiting	10
Total Vehicle Trips	26

Saturday Peak Hour

Trips Entering	17
Trips Exiting	16
Total Vehicle Trips	33

Source: Institute of Transportation Engineers, Trip Generation, 12th Edition, 2025


Based on the relatively low number of peak-hour vehicle trips anticipated to be generated by the proposed subdivision, traffic impacts to White Oaks Road and nearby intersections are expected to be minimal. The projected increase in traffic is not anticipated to result in a noticeable change in overall traffic operations within the surrounding roadway network.

Given the residential nature of the surrounding area, low existing traffic volumes, and limited peak-hour trip generation associated with the proposed development, the subdivision is not anticipated to result in adverse impacts to traffic operations or roadway safety in the project vicinity.

Sincerely,
Tighe & Bond, Inc.

Patrick M. Crimmins, PE
Vice President

Neil A. Hansen, PE
Project Manager

Copy: Scot Buonopane (via email)

33 White Oaks Road, Laconia, New Hampshire Wetland Delineation Memorandum

To: Scott Buonopane
FROM: Jeremy Degler CWB, CWS, PWS, Project Environmental Scientist, Tighe & Bond
COPY: Neil Hansen, PE, Project Manager, Tighe & Bond; Stefanie Tetreault, CWS, PWS, Project Manager, Tighe & Bond
DATE: December 2, 2025

The following technical memorandum describes the wetland delineation conducted by Tighe & Bond on November 7, 2025, in support of the initial Feasibility Study being conducted for a proposed multi-family development project at 33 White Oaks Road in Laconia, New Hampshire. A topographic site location map and wetland delineation map are provided in Attachment 1, site photographs are provided in Attachment 2, and US Army Corps of Engineers (USACE) wetland delineation datasheets are provided in Attachment 3.

Site Location and Project Background

The subject property is located at 33 White Oaks Road in the Town of Laconia, New Hampshire (Tax Map 278, Block 241, Lot 29). Tighe & Bond has been requested to provide services related to an initial Feasibility Study for a proposed multi-family development project. As part of this assessment, a wetland delineation was conducted to identify potential jurisdictional resource areas within the proposed project area, as well as classification and assessment to allow for strategic planning and informed decision making. This delineation effort encompassed approximately 10 acres surrounding the anticipated project area within the western half of the subject parcel.

The western portion of the parcel is in the Commercial Resort (CR) district, while the eastern portion of the parcel is located in the Rural Residential (RR1) district. The parcel currently consists of a single-family residential home. The proposed project would subdivide the western portion of the parcel into individual single family home lots, with appurtenant access, parking, pedestrian connections, stormwater management, utilities, and landscaping.

Local, state, and federal jurisdictions may apply to delineated wetlands and established buffer areas. Pursuant to the City of Laconia's Wetlands Conservation and Water Quality Overlay District (Zoning Ordinance, Chapter 235, Article IV, Section 235-17), the only buffer applicable to this site is the 50-foot setback from non-prime wetlands exceeding 3,000 square feet, although additional buffer requirements apply to other wetland types elsewhere in the city. Dredge and fill activities within jurisdictional wetlands are regulated by the New Hampshire Department of Environmental Services (NHDES) under RSA 482-A and by the U.S. Army Corps of Engineers under Section 404 of the Clean Water Act.

Wetland Delineation

On November 7, 2025, a NH Certified Wetland Scientist (CWS) from Tighe & Bond delineated jurisdictional resource areas within the western portion of the subject property. Weather during the delineation was overcast with a high temperature of approximately 37°F. Local

weather yielded 0.22 inches of rain in the week prior to the field delineation.¹ The site conditions were considered atypical and/or problematic at the time due to the status of Severe Drought (D2). The New Hampshire Department of Environmental Services (NHDES) declared a State of Severe Drought in Belknap County effective as of September 2025.²

The wetland delineation followed the methodologies outlined in NH Administrative Rule Env-Wt 406, the *US Army Corps of Engineers Wetland Delineation Manual Technical Report* (Y-87-1; January 1987) and the *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Northcentral and Northeast Region* (Version 2.0, January 2012). Wetlands were classified based on the *Classification of Wetlands and Deepwater Habitats of the United States*.³

The wetland boundaries were located using a hand-held Eos Skadi GPS unit with sub-meter accuracy and were marked within the delineation area using sequentially numbered pink flagging tape.

Summary of Delineated Natural Resource Areas

Flag Series 1A demarcates the limits of one palustrine wetland located within the delineation area. A summary of the delineated resource area is provided below. No other jurisdictional wetland resource areas were identified during the site investigation or desktop review.

The Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM; Panel No. 3300050002B, effective August 15, 1980) was consulted to evaluate the presence of floodplains within the vicinity of the proposed project; no portion of the subject property is within a FEMA-mapped floodplain.

Wetland 1

Wetland 1 (Flag Series 1A; Photographs 4 and 5) bisects the subject property from north to south near the parcel's east-west midpoint. The central portion of the wetland boundary generally follows the alignment of an adjacent stone wall and extends onto both neighboring properties. The western boundary of Wetland 1 was delineated in the field with pink flagging labeled 1A-1 through 1A-14. Representative wetland and upland data plots were taken near Wetland Flag 1A-8. The eastern wetland boundary was not field delineated as it is outside the scope of the delineation area.

¹ Weather Station ID: KNHGILFO37 (43.55° N, 71.42° W; Gilford, NH). Accessed via Weather Underground on September 12, 2025; <https://www.wunderground.com/weather/us/nh/gilford/KNHGILFO37>.

² National Integrated Drought Information System: <https://www.drought.gov/states/new-hampshire/county/belknap>

³ Federal Geographic Data Committee. 2013. Classification of wetlands and deepwater habitats of the United States. FGDC-STD-004-2013. Second Edition. Wetlands Subcommittee, Federal Geographic Data Committee and U.S. Fish and Wildlife Service, Washington, DC.

Dominant wetland vegetation consisted of winterberry (*Ilex verticillata*; FACW), sensitive fern (*Onoclea sensibilis*; FACW), several hydrophytic species of sedge (*Carex* spp.), and purpleleaf willowherb (*Epilobium coloratum*; OBL). The plant community also passes the FAC-neutral test, which is an indicator of wetland hydrology.⁴ Soils within the wetland consisted of thin organic (10YR 2/1) and depleted mineral horizons (10YR 4/1) with prominent redox concentrations throughout (5YR 3/4), overlying a restrictive layer of stony subsoils on a hummock-and-hollow landform. Observed indicators of hydrology included areas of sparsely vegetated concave surface, water-stained leaves, drainage patterns, stunted or stressed plants, geomorphic position, and microtopographic relief. Based on the prevalence of a hydrophytic plant community and observed indicators of hydrology, soil saturation is likely present during wetter months and when not in a state of Severe Drought. This wetland is classified as a mixture of palustrine emergent (persistent), scrub-shrub (broad-leaved deciduous), and forested (broad-leaved deciduous), with a seasonally flooded/saturated hydroperiod (PEM1E/PSS1E/PFO1E).² Wetland 1 is less than 3,000 square feet in size, does not contain a stream, and based on aerial imagery and site review, is not contiguous to public surface waters. The delineation occurred outside the vernal pool amphibian breeding season; however, no physical features indicative of potential vernal pools were observed during the field delineation.

Priority Resource Areas

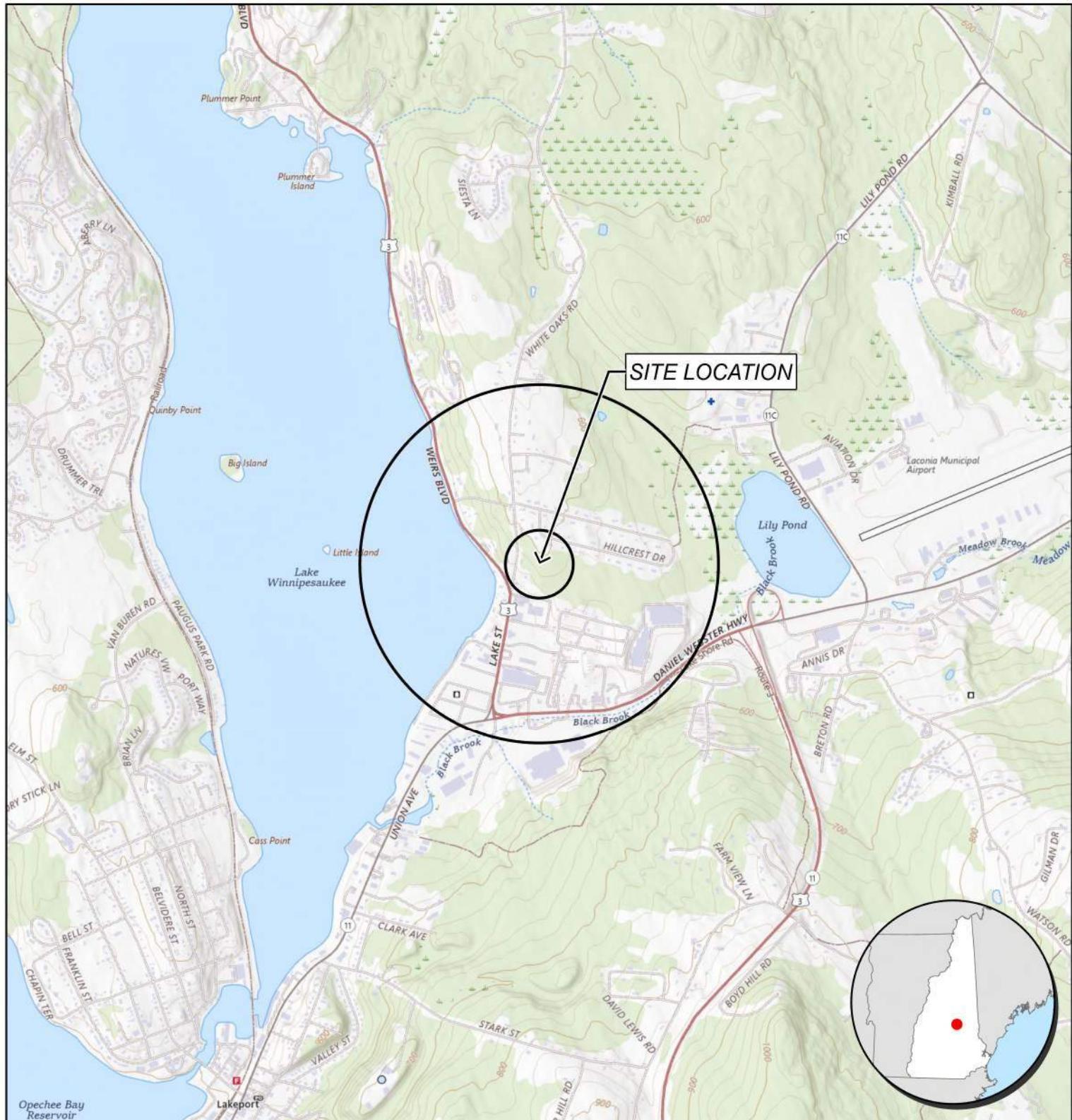
Priority Resource Areas (PRAs) are defined in Env-Wt 103.68 (effective April 27, 2024) as bogs; wetlands located in a river floodplain with a drainage area of at least one square mile or in a tidal area; designated prime wetlands or duly-established 100-foot buffers to prime wetlands; and sand dunes, tidal wetlands, tidal waters, or undeveloped tidal buffer zones.

The delineation confirmed that none of these PRA categories apply. There are no bogs located on-site; the wetland is not situated in a river floodplain with a drainage area of at least one square mile and is not in a tidal area; the site is neither a designated prime wetland nor within a duly-established 100-foot buffer to a prime wetland; and the site does not include any sand dune, tidal wetland, tidal water, or undeveloped tidal buffer zone.

PRAs also include rare, threatened, or endangered species, or protected habitats. As a next step, we recommend completing a DataCheck request with the NHDES Ecological Review Section to determine if any of these species have been identified within or surrounding the subject property.

Summary

In November 2025, a Tighe & Bond NH Certified Wetland Scientist delineated wetlands and jurisdictional areas within the vicinity of the project area, including one palustrine wetland. Pending review for protected species or habitat by NHDES, this wetland is not classified as a Priority Resource Area, but the proposed development activities may be subject to federal, state, and local permitting jurisdiction if dredging or filling is proposed to occur within the wetland or within 50-feet of the delineated boundary.


⁴ Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Northcentral and Northeast Region (Version 2.0, January 2012).

Tighe&Bond

ATTACHMENT 1

FIGURE 1
SITE LOCATION
November 2025

33 White Oaks Road
Laconia, New Hampshire

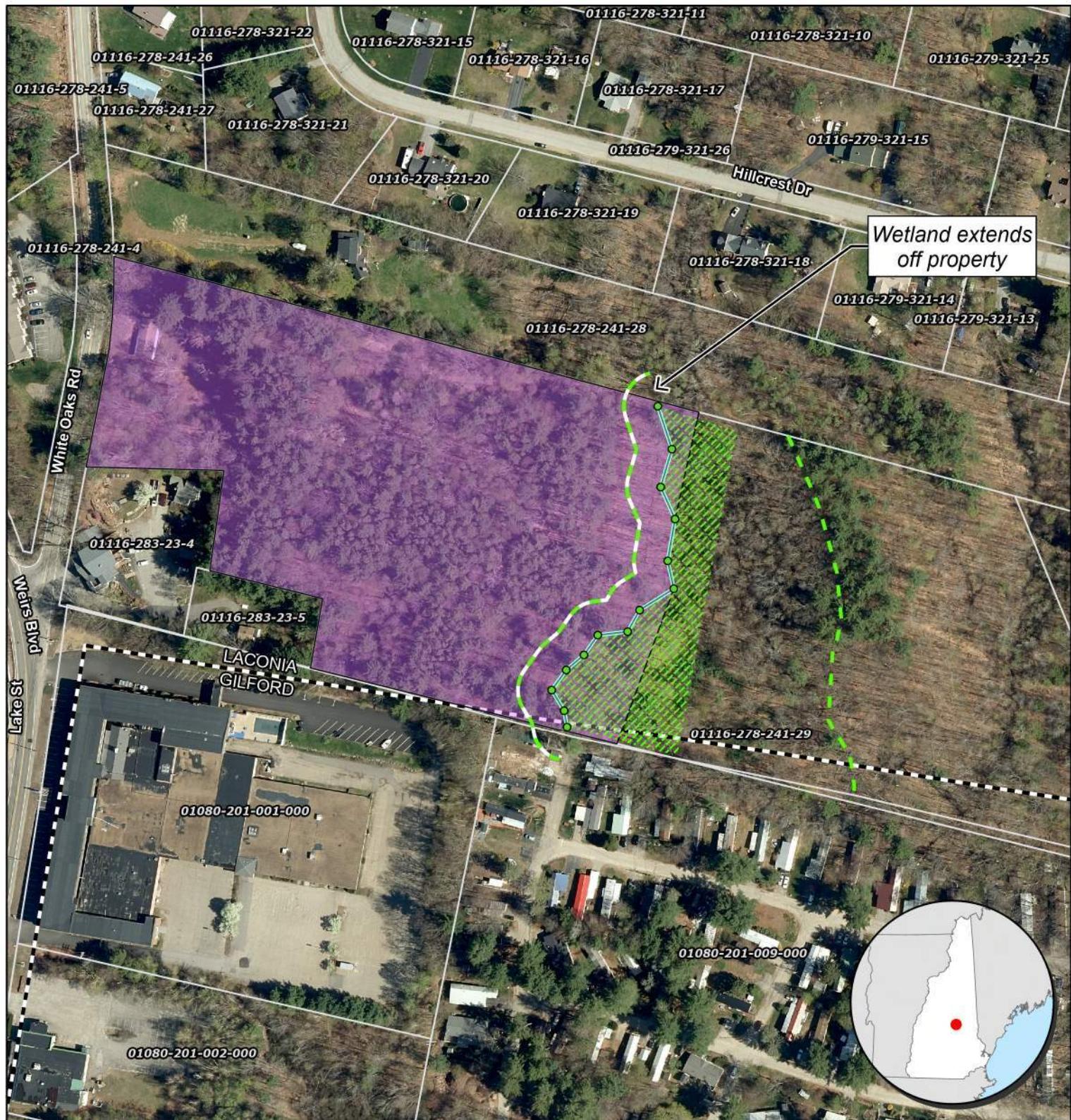


FIGURE 2

AERIAL

November 2025

33 White Oaks Road
Laconia, New Hampshire

● Wetland Flag

— Delineated Wetland Boundary

— Approximate Wetland Boundary (Not Field Delienated)

— 50-Foot Buffer Zone

■ Delineated Wetland

■ Limit of Delineation Area

■ Approximate Parcel Boundary

■ Town Boundary

1:2,400

0 100 200
Feet

Tighe & Bond

Based on NH GRANIT Color Orthophotography (2021-2022).

ATTACHMENT 2

Photographic Log

Tighe&Bond

Client: Scott Buonopane

Job Number: R5089-0278

Site: 33 White Oaks Road, Laconia, New Hampshire

Photographic Log

Tighe&Bond

Client: Scott Buonopane

Job Number: R5089-0278

Site: 33 White Oaks Road, Laconia, New Hampshire

Photograph No.: 3	Date: 11/07/2025	Direction Taken: West
--------------------------	-------------------------	------------------------------

Description: Representative overview of the upland forest located within the central portion of the delineation area, behind (east of) the existing single-family residential home.

Photograph No.: 4	Date: 11/07/2025	Direction Taken: Northeast
--------------------------	-------------------------	-----------------------------------

Description: Overview of Wetland 1 (PEM1E/PSS1E/PFO1E), located at the eastern edge of the delineation area.

Photographic Log

Tighe&Bond

Client: Scott Buonopane

Job Number: R5089-0278

Site: 33 White Oaks Road, Laconia, New Hampshire

Photograph No.: 5	Date: 11/07/2025	Direction Taken: Southeast
Description: Overview of Wetland 1 (PEM1E/PSS1E/PFO1E), located at the eastern edge of the delineation area.		

ATTACHMENT 3

WETLAND DETERMINATION DATA FORM – Northcentral and Northeast Region

Project/Site: 33 White Oaks Road City/County: Laconia / Belknap Sampling Date: 11/7/2025
Applicant/Owner: Scott Buonopane State: NH Sampling Point: W1-Wet
Investigator(s): Jeremy Degler, CWB, CWS, PWS - Tighe & Bond Section, Township, Range: N/A
Landform (hillside, terrace, etc.): Terrace Local relief (concave, convex, none): Concave Slope %: 8-15
Subregion (LRR or MLRA): LRR R, MLRA 144B Lat: 43.567890 Long: -71.444215 Datum: NAD83
Soil Map Unit Name: Canterbury fine sandy loam, 8 to 15 percent slopes, very stony (167C) NWI classification: N/A
Are climatic / hydrologic conditions on the site typical for this time of year? Yes No (If no, explain in Remarks.)
Are Vegetation N, Soil N, or Hydrology N significantly disturbed? Are "Normal Circumstances" present? Yes No
Are Vegetation N, Soil N, or Hydrology N naturally problematic? (If needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes <input checked="" type="checkbox"/>	No <input type="checkbox"/>	Is the Sampled Area within a Wetland? If yes, optional Wetland Site ID: <input type="text"/>
Hydric Soil Present?	Yes <input checked="" type="checkbox"/>	No <input type="checkbox"/>	
Wetland Hydrology Present?	Yes <input checked="" type="checkbox"/>	No <input type="checkbox"/>	

HYDROLOGY

Wetland Hydrology Indicators:			Secondary Indicators (minimum of two required)		
Primary Indicators (minimum of one is required; check all that apply)					
<input type="checkbox"/> Surface Water (A1)	<input checked="" type="checkbox"/> Water-Stained Leaves (B9)	<input type="checkbox"/> Surface Soil Cracks (B6)			
<input type="checkbox"/> High Water Table (A2)	<input type="checkbox"/> Aquatic Fauna (B13)	<input type="checkbox"/> Drainage Patterns (B10)			
<input type="checkbox"/> Saturation (A3)	<input type="checkbox"/> Marl Deposits (B15)	<input type="checkbox"/> Moss Trim Lines (B16)			
<input type="checkbox"/> Water Marks (B1)	<input type="checkbox"/> Hydrogen Sulfide Odor (C1)	<input type="checkbox"/> Dry-Season Water Table (C2)			
<input type="checkbox"/> Sediment Deposits (B2)	<input type="checkbox"/> Oxidized Rhizospheres on Living Roots (C3)	<input type="checkbox"/> Crayfish Burrows (C8)			
<input type="checkbox"/> Drift Deposits (B3)	<input type="checkbox"/> Presence of Reduced Iron (C4)	<input type="checkbox"/> Saturation Visible on Aerial Imagery (C9)			
<input type="checkbox"/> Algal Mat or Crust (B4)	<input type="checkbox"/> Recent Iron Reduction in Tilled Soils (C6)	<input checked="" type="checkbox"/> Stunted or Stressed Plants (D1)			
<input type="checkbox"/> Iron Deposits (B5)	<input checked="" type="checkbox"/> Thin Muck Surface (C7)	<input checked="" type="checkbox"/> Geomorphic Position (D2)			
<input type="checkbox"/> Inundation Visible on Aerial Imagery (B7)	<input type="checkbox"/> Other (Explain in Remarks)	<input type="checkbox"/> Shallow Aquitard (D3)			
<input checked="" type="checkbox"/> Sparsely Vegetated Concave Surface (B8)		<input checked="" type="checkbox"/> Microtopographic Relief (D4)			
		<input checked="" type="checkbox"/> FAC-Neutral Test (D5)			
Field Observations:					
Surface Water Present?	Yes <input type="checkbox"/>	No <input checked="" type="checkbox"/>	Depth (inches):		
Water Table Present?	Yes <input type="checkbox"/>	No <input checked="" type="checkbox"/>	Depth (inches):		
Saturation Present? (includes capillary fringe)	Yes <input type="checkbox"/>	No <input checked="" type="checkbox"/>	Depth (inches):		
Wetland Hydrology Present? Yes <input type="checkbox"/> No <input type="checkbox"/>					
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:					
<p>Remarks:</p> <p>Multiple wetland hydrology indicators were observed at the time of the site assessment. Soil saturation is likely present during wetter months and when not in Severe Drought status.</p>					

VEGETATION – Use scientific names of plants.

 Sampling Point: W1-Wet

<u>Tree Stratum</u> (Plot size: _____)	<u>Absolute % Cover</u>	<u>Dominant Species?</u>	<u>Indicator Status</u>
1. _____	_____	_____	_____
2. _____	_____	_____	_____
3. _____	_____	_____	_____
4. _____	_____	_____	_____
5. _____	_____	_____	_____
6. _____	_____	_____	_____
7. _____	_____	_____	_____
=Total Cover			
<u>Sapling/Shrub Stratum</u> (Plot size: _____)			
1. <i>Ilex verticillata</i>	20	Yes	FACW
2. <i>Euonymus alatus</i>	10	Yes	UPL
3. _____	_____	_____	_____
4. _____	_____	_____	_____
5. _____	_____	_____	_____
6. _____	_____	_____	_____
7. _____	_____	_____	_____
=Total Cover			
<u>Herb Stratum</u> (Plot size: _____)			
1. <i>Onoclea sensibilis</i>	40	Yes	FACW
2. <i>Tiarella stolonifera</i>	30	Yes	FACU
3. <i>Carex spp.</i>	10	No	FACW
4. <i>Pinus strobus</i> (seedlings)	10	No	FACU
5. <i>Epilobium coloratum</i>	5	No	OBL
6. Unknown scenedesmus aster	5	No	_____
7. _____	_____	_____	_____
8. _____	_____	_____	_____
9. _____	_____	_____	_____
10. _____	_____	_____	_____
11. _____	_____	_____	_____
12. _____	_____	_____	_____
=Total Cover			
<u>Woody Vine Stratum</u> (Plot size: _____)			
1. _____	_____	_____	_____
2. _____	_____	_____	_____
3. _____	_____	_____	_____
4. _____	_____	_____	_____
=Total Cover			

Dominance Test worksheet:

 Number of Dominant Species
 That Are OBL, FACW, or FAC: 2 (A)

 Total Number of Dominant
 Species Across All Strata: 4 (B)

 Percent of Dominant Species
 That Are OBL, FACW, or FAC: 50.0% (A/B)

Prevalence Index worksheet:

	<u>Total % Cover of:</u>	<u>Multiply by:</u>
OBL species	<u>5</u>	x 1 = <u>5</u>
FACW species	<u>70</u>	x 2 = <u>140</u>
FAC species	<u>0</u>	x 3 = <u>0</u>
FACU species	<u>40</u>	x 4 = <u>160</u>
UPL species	<u>10</u>	x 5 = <u>50</u>
Column Totals:	<u>125</u> (A)	<u>355</u> (B)
Prevalence Index = B/A =	<u>2.84</u>	

Hydrophytic Vegetation Indicators:

- 1 - Rapid Test for Hydrophytic Vegetation
- 2 - Dominance Test is >50%
- 3 - Prevalence Index is $\leq 3.0^1$
- 4 - Morphological Adaptations¹ (Provide supporting data in Remarks or on a separate sheet)
- Problematic Hydrophytic Vegetation¹ (Explain)

¹Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.

Definitions of Vegetation Strata:
Tree – Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.

Sapling/shrub – Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.

Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.

Woody vines – All woody vines greater than 3.28 ft in height.

Hydrophytic Vegetation Present? Yes No

Remarks: (Include photo numbers here or on a separate sheet.)

Hydrophytic vegetation was prevalent but not dominant at the time of the site assessment.

SOIL

Sampling Point W1-Wet

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

¹Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains.

²Location: PL=Pore Lining, M=Matrix.

Hydric Soil Indicators:

- Histosol (A1)
- Histic Epipedon (A2)
- Black Histic (A3)
- Hydrogen Sulfide (A4)
- Stratified Layers (A5)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)
- Sandy Redox (S5)
- Stripped Matrix (S6)
- Dark Surface (S7)

- Polyvalue Below Surface (S8) (**LRR R, MLRA 149B**)
- Thin Dark Surface (S9) (**LRR R, MLRA 149B**)
- High Chroma Sands (S11) (**LRR K, L**)
- Loamy Mucky Mineral (F1) (**LRR K, L**)
- Loamy Gleyed Matrix (F2)
- X Depleted Matrix (F3)
- Redox Dark Surface (F6)
- Depleted Dark Surface (F7)
- Redox Depressions (F8)
- Marl (F10) (**LRR K, L**)

Indicators for Problematic Hydric Soils³:

- 2 cm Muck (A10) (**LRR K, L, MLRA 149B**)
- Coast Prairie Redox (A16) (**LRR K, L, R**)
- 5 cm Mucky Peat or Peat (S3) (**LRR K, L, R**)
- Polyvalue Below Surface (S8) (**LRR K, L**)
- Thin Dark Surface (S9) (**LRR K, L**)
- Iron-Manganese Masses (F12) (**LRR K, L, R**)
- Piedmont Floodplain Soils (F19) (**MLRA 149B**)
- Mesic Spodic (TA6) (**MLRA 144A, 145, 149B**)
- Red Parent Material (F21)
- Very Shallow Dark Surface (F22)
- Other (Explain in Remarks)

³Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic.

Restrictive Layer (if observed):

Type: Stone

Depth (inches): 11

Hydric Soil Present? Yes No

Remarks:

Hummock/hollow landform with very stony subsoils. Multiple hydric soil indicators were observed at the time of the site assessment.

VEGETATION – Use scientific names of plants.

 Sampling Point: W1-Upl

<u>Tree Stratum</u> (Plot size: _____)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet: Number of Dominant Species That Are OBL, FACW, or FAC: <u>2</u> (A) Total Number of Dominant Species Across All Strata: <u>5</u> (B) Percent of Dominant Species That Are OBL, FACW, or FAC: <u>40.0%</u> (A/B)																																
1. <i>Fagus grandifolia</i>	40	Yes	FACU																																	
2. <i>Pinus strobus</i>	15	Yes	FACU																																	
3. <i>Quercus rubra</i>	10	No	FACU																																	
4. _____	_____	_____	_____																																	
5. _____	_____	_____	_____																																	
6. _____	_____	_____	_____																																	
7. _____	_____	_____	_____																																	
65 =Total Cover																																				
<u>Sapling/Shrub Stratum</u> (Plot size: _____)					Prevalence Index worksheet: <table style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="width: 50%;">Total % Cover of:</th> <th style="width: 50%;">Multiply by:</th> </tr> </thead> <tbody> <tr> <td>OBL species</td> <td>0</td> <td>x 1 =</td> <td>0</td> </tr> <tr> <td>FACW species</td> <td>10</td> <td>x 2 =</td> <td>20</td> </tr> <tr> <td>FAC species</td> <td>0</td> <td>x 3 =</td> <td>0</td> </tr> <tr> <td>FACU species</td> <td>75</td> <td>x 4 =</td> <td>300</td> </tr> <tr> <td>UPL species</td> <td>0</td> <td>x 5 =</td> <td>0</td> </tr> <tr> <td>Column Totals:</td> <td>85</td> <td>(A)</td> <td>320 (B)</td> </tr> <tr> <td colspan="4" style="text-align: right;">Prevalence Index = B/A = <u>3.76</u></td> </tr> </tbody> </table>		Total % Cover of:	Multiply by:	OBL species	0	x 1 =	0	FACW species	10	x 2 =	20	FAC species	0	x 3 =	0	FACU species	75	x 4 =	300	UPL species	0	x 5 =	0	Column Totals:	85	(A)	320 (B)	Prevalence Index = B/A = <u>3.76</u>			
Total % Cover of:	Multiply by:																																			
OBL species	0	x 1 =	0																																	
FACW species	10	x 2 =	20																																	
FAC species	0	x 3 =	0																																	
FACU species	75	x 4 =	300																																	
UPL species	0	x 5 =	0																																	
Column Totals:	85	(A)	320 (B)																																	
Prevalence Index = B/A = <u>3.76</u>																																				
1. _____	_____	_____	_____																																	
2. _____	_____	_____	_____																																	
3. _____	_____	_____	_____																																	
4. _____	_____	_____	_____																																	
5. _____	_____	_____	_____																																	
6. _____	_____	_____	_____																																	
7. _____	_____	_____	_____																																	
=Total Cover																																				
<u>Herb Stratum</u> (Plot size: _____)					Hydrophytic Vegetation Indicators: <ul style="list-style-type: none"> — 1 - Rapid Test for Hydrophytic Vegetation — 2 - Dominance Test is >50% — 3 - Prevalence Index is $\leq 3.0^1$ — 4 - Morphological Adaptations¹ (Provide supporting data in Remarks or on a separate sheet) — Problematic Hydrophytic Vegetation¹ (Explain) <p>¹Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.</p>																															
1. <i>Pinus strobus (seedlings)</i>	10	Yes	FACU																																	
2. <i>Onoclea sensibilis</i>	5	Yes	FACW																																	
3. <i>Carex spp.</i>	5	Yes	FACW																																	
4. _____	_____	_____	_____																																	
5. _____	_____	_____	_____																																	
6. _____	_____	_____	_____																																	
7. _____	_____	_____	_____																																	
8. _____	_____	_____	_____																																	
9. _____	_____	_____	_____																																	
10. _____	_____	_____	_____																																	
11. _____	_____	_____	_____																																	
12. _____	_____	_____	_____																																	
20 =Total Cover																																				
<u>Woody Vine Stratum</u> (Plot size: _____)					Definitions of Vegetation Strata: <p>Tree – Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.</p> <p>Sapling/shrub – Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.</p> <p>Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.</p> <p>Woody vines – All woody vines greater than 3.28 ft in height.</p>																															
1. _____	_____	_____	_____																																	
2. _____	_____	_____	_____																																	
3. _____	_____	_____	_____																																	
4. _____	_____	_____	_____																																	
=Total Cover																																				
Hydrophytic Vegetation Present? Yes <u> </u> No <u> X </u>																																				

Remarks: (Include photo numbers here or on a separate sheet.)

Hydrophytic vegetation was not dominant nor prevalent at the time of the site assessment. Approximately 80% of the plot surface was unvegetated and covered with leaf litter.

SOIL

Sampling Point W1-Upl

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

¹Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains.

²Location: PL=Pore Lining, M=Matrix.

Hydric Soil Indicators:

- Histosol (A1)
- Histic Epipedon (A2)
- Black Histic (A3)
- Hydrogen Sulfide (A4)
- Stratified Layers (A5)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)
- Sandy Redox (S5)
- Stripped Matrix (S6)
- Dark Surface (S7)
- Polyvalue Below Surface (S8) (**LRR R, MLRA 149B**)
- Thin Dark Surface (S9) (**LRR R, MLRA 149B**)
- High Chroma Sands (S11) (**LRR K, L**)
- Loamy Mucky Mineral (F1) (**LRR K, L**)
- Loamy Gleyed Matrix (F2)
- Depleted Matrix (F3)
- Redox Dark Surface (F6)
- Depleted Dark Surface (F7)
- Redox Depressions (F8)
- Marl (F10) (**LRR K, L**)

Indicators for Problematic Hydric Soils³:

- ____ 2 cm Muck (A10) (**LRR K, L, MLRA 149B**)
- ____ Coast Prairie Redox (A16) (**LRR K, L, R**)
- ____ 5 cm Mucky Peat or Peat (S3) (**LRR K, L, R**)
- ____ Polyvalue Below Surface (S8) (**LRR K, L**)
- ____ Thin Dark Surface (S9) (**LRR K, L**)
- ____ Iron-Manganese Masses (F12) (**LRR K, L, R**)
- ____ Piedmont Floodplain Soils (F19) (**MLRA 149B**)
- ____ Mesic Spodic (TA6) (**MLRA 144A, 145, 149B**)
- ____ Red Parent Material (F21)
- ____ Very Shallow Dark Surface (F22)
- ____ Other (Explain in Remarks)

³Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic.

Restrictive Layer (if observed):

Type: Stone

Depth (inches): 8

Hydric Soil Present? Yes No X

Remarks:

Hummock/hollow landform with very stony subsoils. No hydric soil indicators were observed at the time of the site assessment.